We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron–hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.

1.
A. F.
Andreev
,
Sov. Phys. JETP
19
,
1228
(
1964
).
2.
C. W. J.
Beenakker
,
Phys. Rev. Lett.
97
,
067007
(
2006
).
3.
4.
D. K.
Efetov
,
L.
Wang
,
C.
Handschin
,
K. B.
Efetov
,
J.
Shuang
,
R.
Cava
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Hone
,
C. R.
Dean
, and
P.
Kim
,
Nat. Phys.
12
,
328
(
2016
).
5.
D.
Rainis
,
F.
Taddei
,
F.
Dolcini
,
M.
Polini
, and
R.
Fazio
,
Phys. Rev. B
79
,
115131
(
2009
).
6.
J.
Schelter
,
B.
Trauzettel
, and
P.
Recher
,
Phys. Rev. Lett.
108
,
106603
(
2012
).
7.
C.
Bai
and
Y.
Yang
,
J. Phys. Condens. Matter
32
,
085302
(
2020
).
8.
Y.
Yang
,
B.
Zhao
,
Z.
Zhang
,
C.
Bai
,
X.
Xu
, and
Y.
Jiang
,
Sci. Rep.
6
,
29279
(
2016
).
10.
11.
M.
Zhu
,
M. B.
Shalom
,
A.
Mishchsenko
,
V.
Fal’ko
,
K.
Novoselov
, and
A.
Geim
,
Nanoscale
10
,
3020
(
2018
).
12.
P.
Pandey
,
R.
Kraft
,
R.
Krupke
,
D.
Beckmann
, and
R.
Danneau
,
Phys. Rev. B
100
,
165416
(
2019
).
13.
C.
Girit
,
V.
Bouchiat
,
O.
Naaman
,
Y.
Zhang
,
M. F.
Crommie
,
A.
Zettl
et al.,
Nano Lett.
9
,
198
(
2009
).
14.
J.
Yan
,
M.-H.
Kim
,
J. A.
Elle
,
A. B.
Sushkov
,
G. S.
Jenkins
,
H. M.
Milchberg
,
M. S.
Fuhrer
, and
H. D.
Drew
,
Nat. Nanotechnol.
7
,
472
(
2012
).
15.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
16.
C.
Bai
and
Y.
Yang
,
J. Phys. Condens. Matter
32
,
185001
(
2020
).
17.
J.
Xue
,
J.
Sanchez-Yamagishi
,
D.
Bulmash
et al.,
Nat. Mater.
10
,
282
(
2011
).
18.
K. I.
Bolotin
,
K. J.
Sikes
,
J.
Hone
,
H. L.
Stormer
, and
P.
Kim
,
Phys. Rev. Lett.
101
,
096802
(
2008
).
19.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
et al.,
Nat. Nanotechnol.
5
,
722
(
2010
).
20.
D. K.
Efetov
and
K. B.
Efetov
,
Phys. Rev. B
94
,
075403
(
2016
).
21.
Y.
Takane
,
K.
Yarimizu
, and
A.
Kanda
,
J. Phys. Soc. Jpn.
86
,
064707
(
2017
).
22.
A.
Soori
,
M. R.
Sahu
,
A.
Das
, and
S.
Mukerjee
,
Phys. Rev. B
98
,
075301
(
2018
).
23.
S.
Chen
,
Z.
Han
,
M. M.
Elahi
,
K. M.
Masum Habib
,
L.
Wang
,
B.
Wen
,
Y.
Gao
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Hone
,
A. W.
Ghosh
, and
C. R.
Dean
,
Science
353
,
1522
(
2016
).
24.
S.
Bhandari
,
G.-H.
Lee
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
, and
R. M.
Westervelt
,
Nano Lett.
20
,
4890
(
2020
).
25.
G.-H.
Lee
,
K.-F.
Huang
,
D. K.
Efetov
,
D. S.
Wei
,
S.
Hart
,
T.
Taniguchi
,
K.
Watanabe
,
A.
Yacoby
, and
P.
Kim
,
Nat. Phys.
13
,
693
(
2017
).
26.
S.
Das
,
J. A.
Robinson
,
M.
Dubey
,
H.
Terrones
, and
M.
Terrones
,
Annu. Rev. Mater. Res.
45
,
1
(
2015
).
27.
T.
Low
,
A.
Chaves
,
J. D.
Caldwell
,
A.
Kumar
,
N. X.
Fang
,
P.
Avouris
,
T. F.
Heinz
,
F.
Guinea
,
L.
Martin-Moreno
, and
F.
Koppens
,
Nat. Mater.
16
,
182
(
2017
).
28.
P. G.
De Gennes
,
Superconductivity of Metals and Alloys
(
Benjamin
,
New York
,
1966
).
29.
A.
Chaves
,
G. A.
Farias
,
F. M.
Peeters
, and
R.
Ferreira
,
Commun. Comput. Phys.
17
,
850
(
2015
).
31.
F. J. A.
Linard
,
V. N.
Moura
,
L.
Covaci
,
M. V.
Milosevic
, and
A.
Chaves
, arXiv:2009.07957 (
2020
).
32.
T. M.
Rusin
and
W.
Zawadzki
,
Phys. Rev. B
78
,
125419
(
2008
).
33.
G. E.
Blonder
,
M.
Tinkham
, and
T. M.
Klapwijk
,
Phys. Rev. B
25
,
4515
(
1982
).

Supplementary Material

You do not currently have access to this content.