Graphite ablation by an electric arc or a laser/solar flux is widely used for the synthesis of carbon nanomaterials. Previously, it was observed in multiple arc experiments that the ablation rate is a strong nonlinear function of the arc current and it drastically increases at some threshold current. We developed an analytical model explaining this transition in the rate of ablation by an electric arc or a laser/solar flux. The model not only explains the observations but can also accurately predict the experimentally observed ablation rates. The model takes into account redeposition of carbon back to the ablated surface, which is the key process responsible for the observed effects.
REFERENCES
1.
S.
Yatom
, A.
Khrabry
, J.
Mitrani
, A.
Khodak
, I.
Kaganovich
, V.
Vekselman
, B.
Stratton
, and Y.
Raitses
, “Synthesis of nanoparticles in carbon arc: Measurements and modeling
,” MRS Commun.
8
, 842
–849
(2018
). 2.
M.
Kundrapu
and M.
Keidar
, “Numerical simulation of carbon arc discharge for nanoparticle synthesis
,” Phys. Plasmas
19
, 073510
(2012
). 3.
S.
Yatom
, R. S.
Selinsky
, B. E.
Koel
, and Y.
Raitses
, “'Synthesis-on’ and ‘synthesis-off’ modes of carbon arc operation during synthesis of carbon nanotubes
,” Carbon
125
, 336
–343
(2017
). 4.
J.
Fetterman
, Y.
Raitses
, and M.
Keidar
, “Enhanced ablation of small anodes in a carbon nanotube arc plasma
,” Carbon
46
, 1322
(2008
). 5.
A.
Szabó
, C.
Perri
, A.
Csató
, G.
Giordano
, D.
Vuono
, and J. B.
Nagy
, “Synthesis methods of carbon nanotubes and related materials
,” Materials
3
, 3092
–3140
(2010
). 6.
S.
Arepalli
, “Laser ablation process for single-walled carbon nanotube production
,” J. Nanosci. Nanotechnol.
4
, 317
–325
(2004
). 7.
M.
Cau
, N.
Dorval
, B.
Cao
, B.
Attal-Trétout
, L.
Cochon
, A.
Loiseau
, S.
Farhat
, and C. D.
Scott
, “Spatial evolutions of Co and Ni atoms during single-walled carbon nanotubes formation: Measurements and modeling
,” J. Nanosci. Nanotechnol.
6
, 1298
–1308
(2006
). 8.
M.
Cau
, N.
Dorval
, B.
Attal-Trétout
, J.-L.
Cochon
, A.
Foutel-Richard
, A.
Loiseau
, V.
Krüger
, M.
Tsurikov
, and C. D.
Scott
, “Formation of carbon nanotubes: In situ optical analysis using laser-induced incandescence and laser-induced fluorescence
,” Phys. Rev. B
81
, 165416
(2010
). 9.
D.
Laplaze
, L.
Alvarez
, T.
Guillard
, J. M.
Badie
, and G.
Flamant
, “Carbon nanotubes: Dynamics of synthesis processes
,” Carbon
40
, 1621
(2002
). 10.
R.
Das
, Z.
Shahnavaz
, E.
Ali
, M. M.
Islam
, and S. B. A.
Hamid
, “Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis?
,” Nanoscale Res. Lett.
11
, 510
(2016
). 11.
X. Q.
Fang
, A.
Shashurin
, G.
Teel
, and M.
Keidar
, “Determining synthesis region of the single wall carbon nanotubes in arc plasma volume
,” Carbon
107
, 273
(2016
). 12.
T.
Guillard
, S.
Cetout
, G.
Flamant
, and D.
Laplaze
, “Solar production of carbon nanotubes; structure evolution with experimental conditions
,” J. Mater. Sci.
35
, 419
–425
(2000
). 13.
K.
Ostrikov
and A. B.
Murphy
, “Plasma-aided nanofabrication: Where is the cutting edge?
,” J. Phys. D Appl. Phys.
40
, 2223
(2007
). 14.
M.
Keidar
, A.
Shashurin
, J.
Li
, O.
Volotskova
, M.
Kundrapu
, and T. S.
Zhuang
, “Arc plasma synthesis of carbon nanostructures: Where is the frontier?
,” J. Phys. D Appl. Phys.
44
, 174006
(2011
). 15.
M.
Meyyappan
, Carbon Nanotubes: Science and Applications
(CRC
, Boca Raton
, 2004
).16.
J.
Ng
and Y.
Raitses
, “Role of the cathode deposit in the carbon arc for the synthesis of nanomaterials
,” Carbon
77
, 80
(2014
). 17.
J.
Ng
and Y.
Raitses
, “Self-organisation processes in the carbon arc for nanosynthesis
,” J. Appl. Phys.
117
, 063303
(2015
). 18.
V.
Vekselman
, M.
Feurer
, T.
Huang
, B.
Stratton
, and Y.
Raitses
, “Complex structure of the carbon arc discharge for synthesis of nanotubes
,” Plasma Sources Sci. Technol.
26
, 065019
(2017
). 19.
V.
Nemchinsky
and Y.
Raitses
, “Atmospheric pressure arc discharge with ablating graphite anode
,” J. Phys. D Appl. Phys.
48
, 245202
(2015
). 20.
V.
Nemchinsky
and Y.
Raitses
, “Anode sheath transition in an anodic arc for synthesis of nanomaterials
,” Plasma Sources Sci. Technol.
25
, 035003
(2016
). 21.
A. R.
Mansour
and K.
Hara
, “Multispecies plasma fluid simulation for carbon arc discharge
,” J. Phys. D Appl. Phys.
52
, 105204
(2019
). 22.
I.
Langmuir
, “The vapor pressure of metallic tungsten
,” Phys. Rev.
2
, 329
(1913
). 23.
M. S.
Benilov
, S.
Jacobsson
, A.
Kaddani
, and S.
Zahrai
, “Vaporization of a solid surface in an ambient gas
,” J. Phys. D Appl. Phys.
34
, 1993
–1999
(2001
). 24.
J.
Chen
, A.
Khrabry
, I. D.
Kaganovich
, A.
Khodak
, V.
Vekselman
, and H.-P.
Li
, “Validated two-dimensional modeling of short carbon arcs: Anode and cathode spots
,” Phys. Plasmas
27
, 083511
(2020
). 25.
J.
Huo
, J.
Ronzello
, A.
Rontey
, Y.
Wang
, L.
Jacobs
, T.
Sommerer
, and Y.
Cao
, “Development of an arc root model for studying the electrode vaporization and its influence on arc dynamics
,” AIP Adv.
10
, 085324
(2020
). 26.
A.
Khrabry
, I. D.
Kaganovich
, A.
Khodak
, V.
Vekselman
, and Y.
Raitses
, “Validated modeling of atmospheric-pressure anodic arc,” arxiv.org/abs/1902.09991 (2019).27.
J. O.
Hirschfelder
, C. F.
Curtiss
, and R. B.
Bird
, Molecular Theory of Gases and Liquids
(Wiley
, New York
, 1964
), p. 1219
.28.
N. A.
Almeida
, M. S.
Benilov
, and G. V.
Naidis
, “Unified modelling of near-cathode plasma layers in high-pressure arc discharges
,” J. Phys. D Appl. Phys.
41
, 245201
(2008
). 29.
M.
Baeva
, M. S.
Benilov
, N. A.
Almeida
, and D.
Uhrlandt
, “Novel non-equilibrium modelling of a DC electric arc in argon
,” J. Phys. D Appl. Phys.
49
, 245205
(2016
). 30.
A.
Khrabry
, I. D.
Kaganovich
, V.
Nemchinsky
, and A.
Khodak
, “Investigation of the short argon arc with hot anode. I. numerical simulations of non-equilibrium effects in the near-electrode regions
,” Phys. Plasmas
25
, 013521
(2018
). 31.
A.
Shashurin
, M.
Keidar
, and I. I.
Beilis
, “Voltage-current characteristics of an anodic arc producing carbon nanotubes
,” J. Appl. Phys.
104
, 063311
(2008
). 32.
M.
Tacu
, A.
Khrabry
, and I. D.
Kaganovich
, “Analytical formula for cluster diameter and its dispersion at the end of nucleation stage,” Phys. Rev. E, arxiv.org/pdf/1903.12268.pdf (2019), submitted.33.
A.
Khrabry
, I. D.
Kaganovich
, V.
Nemchinsky
, and A.
Khodak
, “Investigation of the short argon arc with hot anode. II. Analytical model
,” Phys. Plasmas
25
, 013522
(2018
). 34.
D. C.
Hamilton
and W. R.
Morgan
, “Radiant-interchange configuration factors,” NACA-TN-2836 (1952), https://archive.org/details/nasa_techdoc_19930083529/page/n1.35.
M.
Baeva
, “Non-equilibrium modeling of tungsten-inert gas arcs
,” Plasma Chem. Plasma Process.
37
, 341
–370
(2017
). 36.
L.
Pekker
and N.
Hussary
, “Boundary conditions at the walls with thermionic electron emission in two temperature modeling of ‘thermal’ plasmas
,” Phys. Plasmas
22
, 083510
(2015
). 37.
M.
Lisnyak
, M. D.
Cunha
, J. M.
Bauchire
, and M. S.
Benilov
, “Numerical modelling of high-pressure arc discharges: Matching the LTE arc core with the electrodes
,” J. Phys. D Appl. Phys.
50
, 315203
(2017
). 38.
M. S.
Benilov
, L. G.
Benilova
, H.-P.
Li
, and G.-Q.
Wu
, “Sheath and arc-column voltages in high-pressure arc discharges
,” J. Phys. D Appl. Phys.
45
, 355201
(2012
). 39.
P.
Liang
and J. P.
Trelles
, “3D numerical investigation of a free-burning argon arc with metal electrodes using a novel sheath coupling procedure
,” Plasma Sources Sci. Technol.
28
, 115012
(2019
). 40.
S. M.
Shkol’nik
, “Anode phenomena in arc discharges: A review
,” Plasma Sources Sci. Technol.
20
, 013001
(2011
). 41.
M. D.
Campanell
, “Negative plasma potential relative to electron-emitting surfaces
,” Phys. Rev. E
88
, 033103
(2013
). 42.
M. D.
Campanell
and M. V.
Umansky
, “Strongly emitting surfaces unable to float below plasma potential
,” Phys. Rev. Lett.
116
, 085003
(2016
). 43.
V.
Vekselman
, A.
Khrabry
, I.
Kaganovich
, B.
Stratton
, R. S.
Selinsky
, and Y.
Raitses
, “Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc
,” Plasma Sources Sci. Technol.
27
, 025008
(2018
). 44.
G.
Cota-Sanchez
, G.
Soucy
, A.
Huczko
, and H.
Lange
, “Induction plasma synthesis of fullerenes and nanotubes using carbon black–nickel particles
,” Carbon
43
, 3153
(2005
). 45.
R. J.
Thorn
and G. H.
Winslow
, “Vaporization coefficient of graphite and composition of the equilibrium vapor
,” J. Chem. Phys.
26
, 186
(1957
).46.
J.
Drowart
, R. P.
Burns
, G.
Demaria
, and M. G.
Inghram
, “Mass spectrometric study of carbon vapor
,” J. Chem. Phys.
31
, 1131
(1959
). 47.
R. E.
Honig
, “Mass spectrometric study of the molecular sublimation of graphite
,” J. Chem. Phys.
22
, 126
(1954
). 48.
H. O.
Pierson
, Handbook of Carbon, Graphite, Diamonds and Fullerenes
(Noyes Publications
, Park Ridge
, NJ
, 1994
), p. 419,
ISBN: 978-0-8155-1339-1.49.
B. R.
Bird
, W. E.
Stewart
, and E. N.
Lightfoot
, Transport Phenomena
(Wiley
, New York
, 1960
).50.
R. J. W.
Henry
, P. G.
Burke
, and A. L.
Sinfailam
, “Scattering of electrons by C, N, O, N+, O+, and O++
,” Phys. Rev.
178
, 218
(1969
). 51.
L.
Jun-Bo
, W.
Yang
, and Z.
Ya-Jun
, “Elastic cross sections for electron–carbon scattering
,” Chin. Phys.
16
, 72
(2007
). 52.
V. A.
Belyaev
, B. G.
Brezhnev
, and E. M.
Erastov
, “Resonant charge transfer of low-energy carbon and nitrogen ions
,” Sov. Phys. JETP
27
, 924
–926
(1968
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/27/6/p924?a=list; http://www.jetp.ac.ru/cgi-bin/dn/e_027_06_0924.pdf.53.
H.
Suno
and T.
Kato
, “Cross section database for carbon atoms and ions: Electron-impact ionization, excitation, and charge exchange in collisions with hydrogen atoms
,” At. Data Nucl. Data Tables
92
, 407
–455
(2006
). 54.
A.
Ostrogorsky
and C.
Marin
, “Heat transfer during production of carbon nanotubes by the electric-arc process
,” Heat Mass Transfer
42
, 470
(2006
). 55.
R. W.
Powell
and F. H.
Schofield
, “The thermal and electrical conductivities of carbon and graphite to high temperatures
,” Proc. Phys. Soc.
51
, 153
(1939
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.