Through the analysis of scales on the drift–diffusion device model of a planar-structured perovskite solar cell, we have obtained accurate-analytical expressions that capture the recombination losses within the cell. The recombination losses are resolved into the radiative and Shockley–Read–Hall mechanisms, as well as interfacial recombination between the perovskite and electron/hole-transporting layers. After parameter calibration with the state of the art planar perovskite solar cell of 23.5% efficiency, the percentage contribution of various recombination loss channels within a planar-structured perovskite solar cell is analytically determined through derived scales and numerically verified at the condition of an open-circuit voltage and a short-circuit current, as well as gives a good prediction of a dominant recombination mechanism within the cell. On this basis, a comparison of loss analysis between the estimated scales and numeric results is carried out at the condition of an open-circuit voltage when a wide range of parameters influencing the recombination current is deviated simultaneously, and a good agreement is obtained.

1.
Renewable Energy World
,
DOE Closes on Four Major Solar Projects
(
Renewable Energy World
,
2011
).
2.
B. H.
Khan
,
Non-Conventional Energy Resources
(
TMH Publications
,
2006
).
3.
D. L.
King
,
A.
Babasola
,
J.
Rozario
, and
J. M.
Pearce
,
Chall. Sustain.
2
,
18
(
2014
).
4.
NASA
,
Basics of Space Flight
(
NASA JPL Publication
,
2006
).
6.
Fraunhofer ISE
,
Photovoltaics Report
(
Fraunhofer ISE
,
2018
).
7.
N. J.
Jeon
,
H.
Na
,
E. H.
Jung
,
T.-Y.
Yang
,
Y. G.
Lee
,
G.
Kim
,
H.-W.
Shin
,
S.
Il Seok
,
J.
Lee
, and
J.
Seo
,
Nat. Energy
3
,
682
(
2018
).
8.
R.
Chen
,
J.
Cao
,
Y.
Duan
,
Y.
Hui
,
T. T.
Chuong
,
D.
Ou
,
F.
Han
,
F.
Cheng
,
X.
Huang
,
B.
Wu
, and
N.
Zheng
,
J. Am. Chem. Soc.
141
,
541
(
2019
).
10.
N.-G.
Park
,
Mater. Today
18
,
65
(
2015
).
11.
D.
Shi
,
V.
Adinolfi
,
R.
Comin
,
M.
Yuan
,
E.
Alarousu
,
A.
Buin
,
Y.
Chen
,
S.
Hoogland
,
A.
Rothenberger
,
K.
Katsiev
,
Y.
Losovyj
,
X.
Zhang
,
P. A.
Dowben
,
O. F.
Mohammed
,
E. H.
Sargent
, and
O. M.
Bakr
,
Science
347
,
519
(
2015
).
12.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
,
341
(
2013
).
13.
J. T.
Wang
,
J. M.
Ball
,
E. M.
Barea
,
A.
Abate
,
J. A.
Alexander-Webber
,
J.
Huang
,
M.
Saliba
,
I.
Mora-Sero
,
J.
Bisquert
,
H. J.
Snaith
, and
R. J.
Nicholas
,
Nano Lett.
14
,
724
(
2014
).
14.
A.
Rajagopal
,
K.
Yao
, and
A. K.-Y.
Jen
,
Adv. Mater.
30
,
1800455
(
2018
).
15.
X.
Peng
,
J.
Yuan
,
S.
Shen
,
M.
Gao
,
A. S. R.
Chesman
,
H.
Yin
,
J.
Cheng
,
Q.
Zhang
, and
D.
Angmo
,
Adv. Funct. Mater.
27
,
1703704
(
2017
).
16.
M.
Remeika
and
Y.
Qi
,
J. Energy Chem.
27
,
1101
(
2018
).
17.
D.
Yang
,
R.
Yang
,
S.
Priya
, and
S.
Liu
,
Angew. Chem. Int. Ed.
58
,
2
(
2019
).
18.
M. J.
Hossain
,
G.
Gregory
,
H.
Patel
,
S.
Guo
,
E. J.
Schneller
,
A. M.
Gabor
,
Z.
Yang
,
A. L.
Blum
, and
K. O.
Davis
, in 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2018).
19.
S.
Agarwal
and
P. R.
Nair
,
J. Appl. Phys.
124
,
183101
(
2018
).
20.
S.
Agarwal
and
P. R.
Nair
,
Appl. Phys. Lett.
107
,
123901
(
2015
).
21.
W. E. I.
Sha
,
H.
Zhang
,
Z. S.
Wang
,
H. L.
ZHu
,
X.
Ren
,
F.
Lin
,
A. K.-Y.
Jen
, and
W. C. H.
Choy
,
Adv. Energy Mater.
8
,
1701586
(
2017
).
22.
X.
Sun
,
R.
Asadpour
,
W.
Nie
,
A. D.
Mohite
, and
M. A.
Alam
,
IEEE J. Photovolt.
5
,
1389
(
2015
).
23.
Y.
Da
,
Y.
Xuan
, and
Q.
Li
,
Sol. Energy Mater. Sol. Cells
174
,
206
(
2018
).
24.
H.
Xue
,
K.
Fu
,
L. H.
Wong
,
E.
Birgersson
, and
R.
Stangl
,
J. Appl. Phys.
122
,
083105
(
2017
).
25.
Q.
Jiang
,
Y.
Zhao
,
X.
Zhang
,
X.
Yang
,
Y.
Chen
,
Z.
Chu
,
Q.
Ye
,
X.
Li
,
Z.
Yin
, and
J.
You
,
Nat. Photonics
13
,
460
(
2019
).
26.
L. A. A.
Pettersson
,
L. S.
Roman
, and
O.
Inganäs
,
J. Appl. Phys.
86
,
487
(
1999
).
27.
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
,
3693
(
2003
).
28.
J. G.
Simmons
and
G. W.
Taylor
,
Phys. Rev. B
4
,
502
(
1971
).
29.
T. S.
Sherkar
,
C.
Momblona
,
L.
Gil-Escrig
,
J.
Ávila
,
M.
Sessolo
,
H. J.
Bolink
, and
L. J. A.
Koster
,
ACS Energy Lett.
2
,
1214
(
2017
).
30.
F.
Staub
,
U.
Rau
, and
T.
Kirchartz
,
ACS Omega
3
,
8009
(
2018
).
31.
COMSOL, Comsol multiphysics 5.2a; see https://www.comsol.com/.
32.
Matlab, Matlab R2018b; see www.mathworks.com/products/matlab.
33.
J. M.
Ball
,
S. D.
Stranks
,
M. T.
Hörantner
,
S.
Hüttner
,
W.
Zhang
,
E. J. W.
Crossland
,
I.
Ramirez
,
M.
Riede
,
M. B.
Johnston
,
R. H.
Friend
, and
H. J.
Snaith
,
Energy Environ. Sci.
8
,
602
(
2015
).
34.
J. M.
Foster
,
H. J.
Snaith
,
T.
Leijtens
, and
G.
Richardson
,
SIAM J. Appl. Math.
74
,
1935
(
2014
).
35.
H.
Zerfaoui
,
D.
Dib
,
M.
Rahmani
,
K.
Benyelloul
, and
C.
Mebarkia
,
AIP Conf. Proc.
1758
,
030029
(
2016
).
36.
S.
Van Reenen
,
M.
Kemerink
, and
H. J.
Snaith
,
J. Phys. Chem. Lett.
6
,
3808
(
2015
).
37.
H.
Xue
,
E.
Birgersson
, and
R.
Stangl
,
Appl. Energy
237
,
131
(
2019
).
38.
S. D.
Nehate
,
A.
Prakash
,
P. D.
Mani
, and
K. B.
Sundaram
,
ECS J. Solid State Sci. Technol.
7
,
87
(
2018
).
39.
F.
Liu
,
J.
Zhu
,
J.
Wei
,
Y.
Li
,
M.
Lv
,
S.
Yang
,
B.
Zhang
,
J.
Yao
, and
S.
Dai
,
Appl. Phys. Lett.
104
,
253508
(
2014
).
40.
H. S.
Kim
,
C. R.
Lee
,
J. H.
Im
,
K. B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S. J.
Moon
,
R.
Humphry-Baker
,
J. H.
Yum
,
J. E.
Moser
,
M.
Gratzel
, and
N.-G.
Park
,
Sci. Rep.
2
,
591
(
2012
).
41.
V.
Stevanović
,
S.
Lany
,
D. S.
Ginley
,
W.
Tumas
, and
A.
Zunger
,
Phys. Chem. Chem. Phys.
16
,
3706
(
2014
).
42.
L.
Etgar
,
P.
Gao
,
Z.
Xue
,
Q.
Peng
,
A. K.
Chandiran
,
B.
Liu
,
M. K.
Nazeeruddin
, and
M.
Gratzel
,
J. Am. Chem. Soc.
134
,
17396
(
2012
).
43.
P.
Yadav
,
K.
Pandey
,
P.
Bhatt
,
D.
Raval
,
B.
Tripathi
,
C.
Kanth P
,
M. K.
Pandey
, and
M.
Kumar
,
Solar Energy
122
,
773
(
2015
).
44.
T.
Minemoto
and
M.
Murata
,
J. Appl. Phys.
116
,
054505
(
2014
).
45.
X.
Wu
,
P.
Liu
,
L.
Ma
,
Q.
Zhou
,
Y.
Chen
,
J.
Lu
, and
S.-E.
Yang
,
Sol. Energy Mater. Sol. Cells
152
,
111
(
2016
).
46.
H. S.
Duan
,
H.
Zhou
,
Q.
Chen
,
P.
Sun
,
S.
Luo
,
T. B.
Song
,
B.
Bob
, and
Y.
Yang
,
Phys. Chem. Chem. Phys.
17
,
112
(
2015
).
47.
P.
Kirchartz
,
Philos. Trans. R. Soc. A
377
,
20180286
(
2019
).
48.
J. M.
Richter
,
M.
Abdi-Jalebi
,
A.
Sadhanala
,
M.
Tabachnyk
,
J. P. H.
Rivett
,
L.
Pazos-Outón
,
K. C.
Gödel
,
M.
Price
, and
F.
Deschler
,
Nat. Commun.
7
,
13941
(
2016
).
49.
T. W.
Crothers
,
R. L.
Milot
,
J. B.
Patel
,
E. S.
Parrott
,
J.
Schlipf
,
P.
Müller-Buschbaum
,
M. B.
Johnston
, and
L. M.
Herz
,
Nano Lett.
17
,
5782
(
2017
).
50.
F.
Staub
,
H.
Hempel
,
J.
Hebig
,
J.
Mock
,
U. W.
Paetzold
,
U.
Rau
,
T.
Unold
, and
T.
Kirchartz
,
Phys. Rev. Appl.
6
,
044017
(
2016
).
51.
P. A.
Markowich
,
C. A.
Ringhofer
, and
S.
C
,
Semiconductor Equations
(
Springer-Verlag
,
Wien
,
1990
).
You do not currently have access to this content.