The development of new technology, which would be able to shift photosensitivity of Si devices to the mid-infrared range, preserving the benefits of cheap silicon readout circuits, is of high priority for short-wave infrared photo-detection in defense, medical, night vision, and material production applications. Group IV GeSn-based materials have recently shown promising optoelectronic characteristics, allowing extension of the detection range to the mid-infrared region. However, the electronic properties of the material are not well understood and need further research. In this work, we provide temperature dependent studies of carrier lifetime, diffusion coefficient, and diffusion length in Ge0.95Sn0.05 epilayer on silicon by applying contactless light induced transient grating technique. The observed temperature dependence of lifetime was explained by the recombination of carriers on vacancy-related defects. The electron and hole capture cross sections were calculated. The temperature dependence of the diffusion coefficient indicated hole mobility limited by phonon and defect scattering. Weakly temperature dependent diffusion length of ∼0.5 μm verified material suitability for efficient submicrometer-thick optoelectronic devices.

1.
V.
Narayanan
,
M. M.
Frank
, and
A. A.
Demkov
,
Thin Films on Silicon: Electronic and Photonic Applications, Series “Materials and Energy”
(
World Scientific Publishing
,
Singapore
,
2016
), Vol. 8.
2.
Properties of Silicon Germanium and SiGe Carbon
, edited by E. Kasper and K. Lyutovich (
The Institution of Engineering and Technology
,
1999
).
3.
E.
Kasper
, “
Group IV heteroepitaxy on silicon for photonics
,”
J. Mater. Res.
31
,
3639
3648
(
2016
).
4.
L.
Vivien
and
P.
Lorenzo
, in
Handbook of Silicon Photonics
, 1st ed. (
CRC Press
,
2013
).
5.
A.
Gassenq
,
F.
Gencarelli
,
J.
Van Campenhout
,
Y.
Shimura
,
R.
Loo
,
G.
Narcy
,
B.
Vincent
, and
G.
Roelkens
, “
Gesn/Ge heterostructure short-wave infrared photodetectors on silicon
,”
Opt. Express
20
,
27297
(
2012
).
6.
F.
Yang
,
K.
Yu
,
H.
Cong
,
C.
Xue
,
B.
Cheng
,
N.
Wang
,
L.
Zhou
,
Z.
Liu
, and
Q.
Wang
, “
Highly enhanced SWIR image sensors based on Ge1−xSnx−graphene heterostructure photodetector
,”
ACS Photonics
6
,
1199
1206
(
2019
).
7.
N.
von den Driesch
,
D.
Stange
,
D.
Rainko
,
I.
Povstugar
,
P.
Zaumseil
,
G.
Capellini
,
T.
Schröder
,
T.
Denneulin
,
Z.
Ikonic
,
J. M.
Hartmann
,
H.
Sigg
,
S.
Mantl
,
D.
Grützmacher
, and
D.
Buca
, “
Advanced GeSn/SiGeSn group IV heterostructure lasers
,”
Adv. Sci.
5
,
1700955
1700957
(
2018
).
8.
S.
Wirths
,
R.
Geiger
,
N.
Von Den Driesch
,
G.
Mussler
,
T.
Stoica
,
S.
Mantl
,
Z.
Ikonic
,
M.
Luysberg
,
S.
Chiussi
,
J. M.
Hartmann
,
H.
Sigg
,
J.
Faist
,
D.
Buca
, and
D.
Grützmacher
, “
Lasing in direct-bandgap GeSn alloy grown on Si
,”
Nat. Photonics
9
,
88
92
(
2015
).
9.
D.
Buca
,
N.
von den Driesch
,
D.
Stange
,
S.
Wirths
,
R.
Geiger
,
C. S.
Braucks
,
S.
Mantl
,
J. M.
Hartmann
,
Z.
Ikonic
,
J.
Witzens
,
H.
Sigg
, and
D.
Grützmacher
, in
GeSn Lasers for CMOS Integration, IEEE International Electron Devices Meeting
(
IEEE
,
2016
).
10.
B.-J.
Huang
,
C.-Y.
Chang
,
Y.-D.
Hsieh
,
R. A.
Soref
,
G.
Sun
,
H.-H.
Cheng
, and
G.-E.
Chang
, “
Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms
,”
ACS Photonics
6
,
1931
1938
(
2019
).
11.
D.
Stange
,
S.
Wirths
,
R.
Geiger
,
C.
Schulte-Braucks
,
B.
Marzban
,
N.
von den Driesch
,
G.
Mussler
,
T.
Zabel
,
T.
Stoica
,
J.-M.
Hartmann
,
S.
Mantl
,
Z.
Ikonic
,
D.
Grützmacher
,
H.
Sigg
,
J.
Witzens
, and
D.
Buca
, “
Optically pumped GeSn microdisk lasers on Si
,”
ACS Photonics
3
,
1279
85
(
2016
).
12.
D.
Rainko
,
Z.
Ikonic
,
A.
Elbaz
,
N.
von den Driesch
,
D.
Stange
,
E.
Herth
,
P.
Boucaud
,
M. E.
Kurdi
,
D.
Grützmacher
, and
D.
Buca
, “
Impact of tensile strain on low Sn content GeSn lasing
,”
Sci. Rep.
9
,
259
(
2019
).
13.
E.
Gaubas
and
J.
Vanhellemont
, “
Dependence of carrier lifetime in germanium on resistivity and carrier injection level
,”
Appl. Phys. Lett.
89
,
142106
(
2006
).
14.
S.
Assali
,
M.
Elsayed
,
J.
Nicolas
,
M. O.
Liedke
,
A.
Wagner
,
M.
Butterling
,
R.
Krause-Rehberg
, and
O.
Moutanabbir
, “
Vacancy complexes in nonequilibrium germanium-tin semiconductors
,”
Appl. Phys. Lett.
114
,
251907
(
2019
).
15.
P.
Ščajev
,
S.
Nargelas
,
K.
Jarašiūnas
,
I.
Kisialiou
,
E.
Ivakin
,
W.
Deferme
,
J.
D'Haen
and
K.
Haenen
, “
Crystallite size dependent carrier recombination rate and thermal diffusivity in undoped and boron doped CVD diamond layers
,”
Phys. Status Solidi A
210
,
2022
2027
(
2013
).
16.
H.
Tran
,
T.
Pham
,
J.
Margetis
,
Y.
Zhou
,
W.
Dou
,
P. C.
Grant
,
J. M.
Grant
,
S.
Alkabi
,
G.
Sun
,
R. A.
Soref
,
J.
Tolle
,
Y.-H.
Zhang
,
W.
Du
,
B.
Li
,
M.
Mortazavi
, and
S.-Q.
Yu
, “
Si-based GeSn photodetectors towards mid-infrared imaging applications
,”
ACS Photonics
6
,
2807
2815
(
2019
).
17.
S.-Q.
Yu
,
S. A.
Ghetmiri
,
W.
Du
,
J.
Margetis
,
Y.
Zhou
,
A.
Mosleh
,
S.
Al-Kabi
,
A.
Nazzal
,
G.
Sun
,
R. A.
Soref
,
J.
Tolle
,
B.
Li
, and
H. A.
Naseem
, “
Si based GeSn light emitter: Mid-infrared device in Si photonics
,”
Proc. SPIE
9367
,
93670R
(
2015
).
18.
Z. P.
Zhang
,
Y. X.
Song
,
Z. Y. S.
Zhu
,
Y.
Han
,
Q. M.
Chen
,
Y. Y.
Li
,
L. Y.
Zhang
, and
S. M.
Wang
, “
Structural properties of GeSn thin films grown by molecular beam epitaxy
,”
AIP Adv.
7
,
045211
(
2017
).
19.
I. N.
Stranski
and
L.
Krastanow
, “
Berichtigung zur Arbeit
,”
Monatsh. für. Chem.
72
,
76
(
1939
).
20.
A. B.
Talochkin
and
V. I.
Mashanov
, “
Formation of GeSn alloy on Si(100) by low-temperature molecular beam epitaxy
,”
Appl. Phys. Lett.
105
,
263101
(
2014
).
21.
Y.
Zhou
,
W.
Dou
,
W.
Du
,
T.
Pham
,
S. A.
Ghetmiri
,
S.
Al-Kabi
,
A.
Mosleh
,
M.
Alher
,
J.
Margetis
,
J.
Tolle
,
G.
Sun
,
R.
Soref
,
B.
Li
,
M.
Mortazavi
,
H.
Naseem
, and
S.-Q.
Yu
, “
Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications
,”
J. Appl. Phys.
120
,
023102
(
2016
).
22.
A.
Mosleh
,
M.
Benamar
,
S. A.
Ghetmiri
,
B. R.
Conely
,
M. A.
Alher
,
W.
Du
,
G.
Sun
,
R.
Soref
,
J.
Margetis
,
J.
Tolle
,
S.-Q.
Yu
, and
H. A.
Naseem
, “
Investigation on the formation and propagation of defects in GeSn thin films
,”
ECS Trans.
64
,
895
901
(
2014
).
23.
J.
Zheng
,
Z.
Liu
,
C.
Xue
,
C.
Li
,
Y.
Zuo
,
B.
Cheng
, and
Q.
Wang
, “
Recent progress in GeSn growth and GeSn-based photonic devices
,”
J. Semicond.
39
,
061006
(
2018
).
24.
P.
Onufrijevs
,
P.
Ščajev
,
A.
Medvids
,
M.
Andrulevicius
,
S.
Nargelas
,
T.
Malinauskas
,
S.
Stanionytė
,
M.
Skapas
,
L.
Grase
,
A.
Pludons
,
M.
Oehme
,
K.
Lyutovich
,
E.
Kasper
,
J.
Schulze
, and
H. H.
Cheng
, “
Direct-indirect GeSn band structure formation by laser radiation: The enhancement of Sn solubility in Ge
,”
Opt. Laser Technol.
128
,
106200
(
2020
).
25.
T. K. P.
Luong
,
M. T.
Dau
,
M. A.
Zrir
,
M.
Stoffel
,
V.
Le Thanh
,
M.
Petit
,
A.
Ghrib
,
M.
El Kurdi
,
P.
Boucaud
,
H.
Rinnert
, and
J.
Murota
, “
Control of tensile strain and interdiffusion in Ge/Si(001) epilayers grown by molecular-beam epitaxy
,”
J. Appl. Phys.
114
,
083504
(
2013
).
26.
A. S.
Vasin
,
F.
Oliveira
,
M. F.
Cerqueira
,
J.
Schulze
, and
M. I.
Vasilevskiy
, “
Structural and vibrational properties of SnxGe1-x: Modeling and experiments
,”
J. Appl. Phys.
124
,
035105
(
2018
).
27.
P.
Ščajev
,
M.
Kato
, and
K.
Jarašiunas
, “
A diffraction-based technique for determination of interband absorption coefficients in bulk 3C-, 4H- and 6H-SiC crystals
,”
J. Phys.D Appl. Phys.
44
,
365402
(
2011
).
28.
S. A.
Ghetmiri
, “
Si-based germanium-Tin (GeSn) emitters for short-wave infrared optoelectronics
,”
Ph.D. Thesis
(
University of Arkansas
,
2016
).
29.
B. K.
Ridley
,
Quantum Processes in Semiconductors
(
Clarendon Press
,
Oxford
,
1999
).
30.
X.
Wang
,
A. C.
Covian
,
L.
Je
,
S.
Fu
,
H.
Li
,
J.
Piao
, and
J.
Liu
, “
GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics
,”
Front. Phys.
7
,
134
(
2019
).
31.
B.
Baerta
,
S.
Gupta
,
F.
Gencarelli
,
R.
Loo
,
E.
Simoen
, and
N. D.
Nguyen
, “
Electrical characterization of p-GeSn/n-Ge diodes with interface traps under dc and ac regimes
,”
Solid State Electron.
110
,
65
70
(
2015
).
32.
Y.
Wu
,
D.
Lei
, and
X.
Gong
, “
Theoretical investigation of metal/n-Ge1−xSnx (0 ≤x < 0.11) contacts using transfer matrix method
,”
J. Appl. Phys.
125
,
105102
(
2019
).
33.
J.-L.
Ma
,
H.-M.
Zhang
,
X.-Y.
Wang
,
Q.
Wei
,
G.-Y.
Wang
, and
X.-B.
Xu
, “
Valence band structure and hole effective mass of uniaxial stressed germanium
,”
J. Comput. Electron.
10
,
388
393
(
2011
).
34.
M. C.
Petersen
,
A. N.
Larsen
, and
A.
Mesli
, “
Divacancy defects in germanium studied using deep-level transient spectroscopy
,”
Phys. Rev. B
82
,
075203
(
2010
).
35.
V. P.
Markevich
,
I. D.
Hawkins
,
A. R.
Peaker
,
K. V.
Emtsev
,
V. V.
Emtsev
,
V. V.
Litvinov
,
L. I.
Murin
, and
L.
Dobaczewski
, “
Vacancy–group-V-impurity atom pairs in Ge crystals doped with P, As, Sb, and Bi
,”
Phys. Rev. B
70
,
235213
(
2004
).
36.
L.
Reggiani
,
C.
Canali
,
F.
Nava
, and
G.
Ottaviani
, “
Hole drift velocity in germanium
,”
Phys. Rev. B
16
,
2781
2791
(
1977
).
37.
K.
Moto
,
R.
Yoshimine
,
T.
Suemasu
, and
K.
Toko
, “
Improving carrier mobility of polycrystalline Ge by Sn doping
,”
Sci. Rep.
8
,
14832
(
2018
).
38.
T.
Sadoh
,
Y.
Kai
,
R.
Matsumura
,
K.
Moto
, and
M.
Miyao
, “
High carrier mobility of Sn-doped polycrystalline-Ge films on insulators by thickness-dependent low-temperature solid-phase crystallization
,”
Appl. Phys. Lett.
109
,
232106
(
2016
).
39.
O.
Madelung
,
Semiconductors—Data Handbook
(
Springer Science & Business Media
,
2012
), p.
691
.
40.
J. D.
Sau
and
M. L.
Cohen
, “
Possibility of increased mobility in Ge-Sn alloy system
,”
Phys. Rev. B
75
,
045208
(
2007
).
41.
O. A.
Golikova
,
B. Y.
Moizhez
, and
L. S.
Stilbans
,
Sov. Phys. Solid State
3
,
2259
2265
(
1962
).
42.
B.
Mukhopadhyay
,
P. K.
Basu
,
R.
Basu
, and
S.
Mukhopadhyay
, in
Phonon and Alloy Scattering Limited Electron Mobility of Direct Gap Ge1-xSnx Alloys
,” in
6th International Conference on Computers and Devices for Communication (CODEC)
(
IEEE
,
2015
).
43.
J.
Hart
,
T.
Adam
,
Y.
Kim
,
Y.-C.
Huang
,
A.
Reznicek
,
R.
Hazbun
,
J.
Gupta
, and
J.
Kolodzey
, “
Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%
,”
J. Appl. Phys.
119
,
093105
(
2016
).
44.
W.
Takeuchi
,
T.
Asano
,
Y.
Inuzuka
,
M.
Sakashita
,
O.
Nakatsuka
, and
S.
Zaima
, “
Characterization of shallow- and deep-level defects in undoped Ge1−xSnx epitaxial layers by electrical measurements
,”
ECS J. Solid State Sci. Technol.
5
,
P3082
P3086
(
2016
).
45.
D.
Zhang
,
C.
Xue
,
B.
Cheng
,
S.
Su
,
Z.
Liu
,
X.
Zhang1
,
G.
Zhang
,
C.
Li
, and
Q.
Wang
, “
High-responsivity GeSn short-wave infrared p-i-n photodetectors
,”
Appl. Phys. Lett.
102
,
141111
(
2013
).
46.
P.
Ščajev
,
S.
Miasojedovas
,
A.
Mekys
,
D.
Kuciauskas
,
K. G.
Lynn
,
S. K.
Swain
, and
K.
Jarašiūnas
, “
Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques
,”
J. Appl. Phys.
123
,
025704
(
2018
).
47.
H. M.
El-Ghanem
and
B. K.
Ridley
, “
Impurity scattering of electrons in non-degenerate semiconductors
,”
J. Phys. C Solid State Phys.
13
,
2041
2054
(
1980
).
48.
C.
Schulte-Braucks
,
Investigation of GeSn as Novel Group IV Semiconductor for Electronic Applications, Key Technologies
(Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2017), Vol. 168, ISBN: 978-3-95806-312-9.
You do not currently have access to this content.