We have investigated the structural, electronic, optical, and transport properties of 2D halide perovskite MAZX3 (MA = CH3NH3; Z = Pb, Sn; and X = Cl, Br, I) using density functional theory. The result suggests that as the atomic radius of halogen increases from Cl to I, the respective lattice constant increases, with a decrease in the bandgap. The bandgap of MAPbX3 is higher than that of MASnX3. The optical properties show that MAPbX3 has a higher static dielectric constant as compared to MASnX3. The optical activities of MAPbX3 and MASnX3 are in the visible region as well as the high ultraviolet region with a high absorption coefficient of 105 cm-1. Furthermore, we found that the carrier mobility of 2D perovskite is higher than the experimental value of bulk systems. The 2D MAPbCl3, MAPbBr3, and MASnCl3 show higher carrier mobility compared to the bulk system. In our outcome, lead-free MASnBr3 shows a higher efficiency of 28.62%, as compared to the 28.21% of MAPbI3. Our results could lead experimentalists to develop these materials for optoelectronics and solar cell device applications.

1.
G.
Lozano
,
J. Phys. Chem. Lett.
9
,
3987
3997
(
2018
).
2.
G.
Grancini
,
C.
Roldan-Carmona
,
I.
Zimmermann
,
E.
Masconi
,
X.
Lee
,
S.
Martineau
,
S.
Narbey
,
F.
Oswald
,
D.
Angelis
,
M.
Gratzel
, and
M. K.
Nazeeruddin
,
Nat. Commun.
8
(
1–8
),
15684
(
2017
).
3.
Z.
Wang
,
Q.
Ou
,
Y.
Zhang
,
Q.
Zhang
,
H. Y.
Hoh
, and
Q.
Bao
,
ACS Appl. Mater. Interfaces.
10
,
24258
24265
(
2018
).
4.
C.
Bernal
and
K.
Yang
,
J. Phys. Chem. C
118
,
24383
24388
(
2014
).
5.
G.
Maculan
,
A.
Sheikh
,
A.
Abdelhady
,
M.
Saidaminov
,
M.
Haque
,
B.
Murali
,
E.
Alarousu
,
O.
Mohammed
,
T.
Wu
,
O.
Bakr
,
J. Phys. Chem. Lett.
6
,
3781
3786
(
2015
).
6.
F.
Saouma
,
D.
Park
,
S.
Kim
,
M.
Jeong
, and
J.
Jang
,
Chem. Mater.
29
,
6876
6882
(
2017
).
7.
Z.
Zhang
,
L.
Ren
,
H.
Yan
,
S.
Guo
,
S.
Wang
,
M.
Wang
, and
K.
Jin
,
J. Phys. Chem. C
121
,
17436
17441
(
2017
).
8.
Y.
Yang
,
M.
Yang
,
Z.
Li
,
R.
Crisp
,
K.
Zhu
, and
M.
Beard
,
J. Phys. Chem. Lett.
6
,
4688
4692
(
2015
).
9.
L.-Z.
Wang
,
Y.
Zhao
,
B.
Liu
,
L.-J.
Wu
, and
M.-Q.
Cai
,
Phys. Chem. Chem. Phys.
18
,
22188
22195
(
2016
).
10.
S.
Kumavat
,
Y.
Sonvane
,
D.
Singh
, and
S.
Gupta
,
J. Phys. Chem. C
123
,
5231
5239
(
2019
).
11.
M.
Liu
,
M.
Johnston
, and
H.
Snaith
,
Nature
501
,
395
398
(
2013
).
12.
Z.
Deng
,
F.
Wei
,
S.
Sun
,
G.
Kieslich
,
A.
Cheetham
, and
P.
Bristowe
,
J. Mater. Chem. A
4
,
12025
12029
(
2016
).
13.
J.
Feng
and
B.
Xiao
,
J. Phys. Chem. C
118
,
19655
19660
(
2014
).
14.
F.
Sani
,
S.
Shafie
,
H.
Lim
, and
A.
Musa
,
Materials
11
(
1–17
),
1008
(
2018
).
15.
Y.
Yuan
,
R.
Xu
,
H.-T.
Xu
,
F.
Hong
,
F.
Xu
, and
L.-J.
Wang
,
Chin. Phys. B
24
(
1–5
),
116302
(
2015
).
16.
C.
Quarti
,
E.
Mosconi
,
J.
Ball
,
V.
D’Innocenzo
,
C.
Tao
,
S.
Pathak
,
H.
Snaith
,
A.
Petrozza
, and
F.
Angelis
,
Energy Environ. Sci.
9
,
155
163
(
2016
).
17.
A.
Bala
,
A.
Deb
, and
V.
Kumar
,
J. Phys. Chem. C
122
,
7464
7473
(
2018
).
18.
N.
Jeon
,
J.
Noh
,
Y.
Kim
,
W.
Yang
,
S.
Ryu
, and
S.
Seok
,
Nat. Mater.
13
,
897
903
(
2014
).
19.
J.-H.
Yang
,
Q.
Yuan
, and
I.
Yakobson
,
J. Phys. Chem. C
120
,
24682
24687
(
2016
).
20.
W. E. I.
Sha
,
X.
Ren
,
L.
Chen
, and
W. C. H.
Choy
,
Appl. Phys. Lett.
106
(
1–6
),
221104
(
2015
).
21.
F.
Chiarella
,
A.
Zappettini
,
F.
Licci
,
I.
Borriello
,
G.
Cantele
,
D.
Ninno
,
A.
Cassinese
,
R.
Vaglio
,
Phys. Rev. B
77
(
1–6
),
045129
(
2008
).
22.
G.
Dalpian
,
Q.
Liu
,
C.
Stoumpos
,
A.
Douvalis
,
M.
Balasubramanian
,
M.
Kanatzidis
, and
A.
Zunger
,
Phys. Rev. Mater.
1
,
025401
(
2017
).
23.
A.
Krishna
,
S.
Gottis
,
M.
Nazeeruddin
, and
F.
Sauvage
,
Adv. Funct. Mater.
29
,
1806482
(
2019
).
24.
P.
You
,
G.
Tang
, and
F.
Yan
,
Materialstoday Energy
11
,
128
158
(
2019
).
25.
H.
Jung
,
C.
Stompus
,
M.
Kanatzidis
, and
V.
Dravid
,
Nano. Lett.
19
,
6109
6117
(
2019
).
26.
Y.
Lekina
and
Z.
Shen
,
J. Sci. Adv. Materials and Devices
4
,
189
200
(
2019
).
27.
Y.
Takahashi
,
H.
Hasegawa
,
Y.
Takahashi
, and
T.
Inabe
,
J. Solid State Chem.
205
,
39
43
(
2013
).
28.
C.
Stoumpos
,
C.
Malliakas
, and
M.
Kanatzidis
,
Inorg. Chem.
52
,
9019
9038
(
2013
).
29.
J.-S.
Park
,
S.
Choi
,
Y.
Yan
,
Y.
Yang
,
J.
Luther
,
S.
Wei
,
P.
Parilla
, and
K.
Zhu
,
J. Phys. Chem. Lett.
6
,
4304
4308
(
2015
).
30.
Y.
Chen
,
Y.
Sun
,
J.
Peng
,
P.
Chábera
,
A.
Honarfar
,
K.
Zheng
, and
Z.
Liang
,
Appl. Mater. Interfaces.
10
,
21343
21348
(
2018
).
31.
W.
Ke
and
M.
Kanatzidis
,
Nat. Comm.
10
(
1–4
),
965
(
2019
).
32.
C.
Ran
,
J.
Xi
,
W.
Gao
,
F.
Yuan
,
T.
Lei
,
B.
Jiao
,
X.
Hou
, and
Z.
Wu
,
ACS Energy Lett.
3
,
713
721
(
2018
).
33.
S.
Shao
,
J.
Liu
,
G.
Portale
,
H.
Fang
,
G.
Blake
,
G.
Brink
,
L.
Koster
, and
M.
Loi
,
Adv. Energy Mater.
8
(
1–10
),
1702019
(
2018
).
34.
T.
Yamada
,
Y.
Yamada
,
H.
Nishimura
,
Y.
Nakaike
,
A.
Wakamiya
,
Y.
Murata
, and
Y.
Kanemitsu
,
Adv. Electron. Mater.
2
(
1–5
),
1500290
(
2016
).
35.
T.
Wei
,
S.
Mokkapati
,
T.
Li
,
C.
Lin
,
G.
Lin
,
C.
Jagadish
, and
J.
He
,
Adv. Funct. Mater.
28
(
1–8
),
1707175
(
2018
).
36.
H.
Feng
,
T.
Paudel
,
E.
Tsymbal
, and
X.
Zeng
,
J. Am. Chem. Soc.
137
,
8227
8236
(
2015
).
37.
E.
Mosconi
,
P.
Umari
, and
F.
Angelis
,
J. Mater. Chem. A
3
,
9208
9215
(
2015
).
38.
P.
Umari
,
E.
Mosconi
, and
F. D.
Angelis
,
Scientific Reports
4
(
107
),
4467
(
2014
).
39.
J.
Even
,
L.
Pedesseau
,
J.
Jancu
, and
C.
Katan
,
J. Phys. Chem. Lett.
4
,
2999
3005
(
2013
).
40.
W.
Yin
,
J.
Yang
,
J.
Kang
,
Y.
Yan
, and
S.
Wei
,
J. Mater. Chem. A
3
,
8926
8942
(
2015
).
41.
P.
Blöchl
,
Phys. Rev B.
50
,
17953
17979
(
1994
).
42.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
43.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
1775
(
1999
).
44.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
45.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
8215
(
2003
).
46.
G.
Wang
,
R.
Pandey
, and
S. P.
Karna
,
Nanoscale
8
,
8819
8825
(
2016
).
47.
Y.
Yamada
,
T. N. M.
Endo
,
A.
Wakamiya
,
Y.
Kanemitsu
 et al,
J. Am. Chem. Soc.
136
,
11610
11613
(
2014
).
48.
B. W.
Veal
and
A. P.
Paulikas
,
Phys. Rev. B
10
,
1280
1289
(
1974
).
49.
M.
Dressel
and
M.
Scheffler
,
Ann. Phys.
15
,
535
544
(
2006
).
50.
M. D.
Ventra
and
S. T.
Pantelides
,
Phys. Rev. B
61
,
16207
16212
(
2000
).
51.
M.
Shirayama
,
H.
Kadowaki
,
T.
Miyadera
,
T.
Sugita
,
M.
Tamakoshi
,
M.
Kato
,
T.
Fujiseki
,
D.
Murata
,
S.
Hara
,
T. N.
Murakami
,
S.
Fujimoto
,
M.
Chikamatsu
, and
H.
Fujiwara
,
Phys. Rev. Appl.
5
(
1–25
),
014012
(
2016
).
52.
Y.-Q.
Zhao
,
B.
Liu
,
Z.-L.
Yu
,
J.
Ma
,
Q.
Wan
,
P. B.
He
, and
M.-Q.
Cai
,
J. Mater. Chem. C
5
,
5356
5364
(
2017
).
53.
Y.
Wang
,
T.
Gould
,
J. F.
Dobson
,
H.
Zhang
,
H.
Yang
,
X.
Yao
, and
H.
Zhao
,
Phys. Chem. Chem. Phys.
16
,
1424
1429
(
2014
).
54.
E.
Menéndez-Proupin
,
P.
Palacios
,
P.
Wahnon
, and
J. C.
Conesa
,
Phys. Rev. B
90
,
045207
(
2014
).

Supplementary Material

You do not currently have access to this content.