In this study, we predicted new two-dimensional tetragonal structures of t-Mn2X2 (X = S, Sb) sheets on the basis of first-principles plane wave calculations within density functional theory with Hubbard U model. Stability tests such as phonon spectrum calculation and molecular dynamic simulations reveal that the 2D t-Mn2X2 structures are dynamically and thermally stable at least in room temperature. Our theoretical calculations have shown that t-Mn2X2 structures have two Raman active and seven infrared active modes. The t-Mn2Sb2 sheet exhibits metallic property, whereas t-Mn2S2 shows semiconducting property with a 0.68 eV indirect bandgap. Exploring of the favorable magnetic orientation calculations revealed that both 2D t-Mn2X2 structures prefer antiferromagnetic spin configuration. Estimated critical temperatures for the phase transition from antiferromagnetic spin order to paramagnetic case are 720 K and 545 K for t-Mn2S2 and t-Mn2Sb2, respectively. These relatively high Néel temperatures and their suitable electronic properties for many applications clearly qualify that the 2D t-Mn2X2 sheets can be a good candidate for room temperature antiferromagnetic device applications.

1.
Y. Z.
Abdullahi
,
Z. D.
Vatansever
,
E.
Akturk
,
Ü
Akıncı
, and
O. U.
Akturk
,
Phys. Chem. Chem. Phys.
22
,
10893
10899
(
2020
).
2.
F.
Ersan
,
E.
Vatansever
,
S.
Sarikurt
,
Y.
Yüksel
,
Y.
Kadioglu
,
H. D.
Ozaydin
,
O. Ü.
Aktürk
,
Ü.
Akıncı
, and
E.
Aktürk
,
J. Magn. Magn. Mater.
476
,
111
119
(
2019
).
3.
S.
Sarikurt
,
Y.
Kadioglu
,
F.
Ersan
,
E.
Vatansever
,
O. Ü.
Aktürk
,
Y.
Yüksel
,
Ü.
Akıncı
, and
E.
Aktürk
,
Phys. Chem. Chem. Phys.
20
,
997
1004
(
2018
).
4.
B.
Akgenc
,
A.
Mogulkoc
, and
E.
Durgun
,
J. Appl. Phys.
127
,
084302
(
2020
).
5.
M.
Baskurt
,
I.
Eren
,
M.
Yagmurcukardes
, and
H.
Sahin
,
Appl. Surf. Sci.
508
,
144937
(
2020
).
6.
E.
Vatansever
,
S.
Sarikurt
, and
R. F. L.
Evans
,
Mater. Res. Express.
5
,
046108
(
2018
).
7.
M.
Fiebig
,
N. P.
Duong
,
T.
Satoh
,
B. B.
Van Aken
,
K.
Miyano
,
Y.
Tomioka
, and
Y.
Tokura
,
J. Phys. D
41
,
164005
(
2008
).
8.
W. H.
Meiklejohn
and
C. P.
Bean
,
Phys. Rev.
105
,
904
(
1957
).
9.
V. M. T. S.
Barthem
,
C. V.
Colin
,
H.
Mayaffre
,
M.-H.
Julien
, and
D.
Givord
,
Nat. Commun.
4
,
1
7
(
2013
).
10.
A. B.
Shick
,
S.
Khmelevskyi
,
O. N.
Mryasov
,
J.
Wunderlich
, and
T.
Jungwirth
,
Phys. Rev. B
81
,
212409
(
2010
).
11.
Z.
Jiang
,
P.
Wang
,
X.
Jiang
, and
J.
Zhao
,
Nanoscale Horiz.
3
,
335
341
(
2018
).
12.
Z.
Fei
,
B.
Huang
,
P.
Malinowski
,
W.
Wang
,
T.
Song
,
J.
Sanchez
,
W.
Yao
,
D.
Xiao
,
X.
Zhu
, and
A. F.
May
,
Nat. Mater.
17
,
778
(
2018
).
13.
Y.
Zhang
,
J.
Pang
,
M.
Zhang
,
X.
Gu
, and
L.
Huang
,
Sci. Rep.
7
,
15993
(
2017
).
14.
J.
Guan
,
C.
Huang
,
K.
Deng
, and
E.
Kan
,
J. Phys. Chem. C
123
,
10114
10119
(
2019
).
15.
B.
Wang
,
Y.
Zhang
,
L.
Ma
,
Q.
Wu
,
Y.
Guo
,
X.
Zhang
, and
J.
Wang
,
Nanoscale
11
,
4204
4209
(
2019
).
16.
S.
Zheng
,
C.
Huang
,
T.
Yu
,
M.
Xu
,
S.
Zhang
,
H.
Xu
,
Y.
Liu
,
E.
Kan
,
Y.
Wang
, and
G.
Yang
,
J. Phys. Chem. Lett.
10
,
2733
2738
(
2019
).
17.
L.
Hu
,
X.
Wu
, and
J.
Yang
,
Nanoscale
8
,
12939
12945
(
2016
).
18.
M.
Arana
,
F.
Estrada
,
D. S.
Maior
,
J. B. S.
Mendes
,
L. E.
Fernandez-Outon
,
W. A. A.
Macedo
,
V. M. T. S.
Barthem
,
D.
Givord
,
A.
Azevedo
, and
S. M.
Rezende
,
Appl. Phys. Lett.
111
,
192409
(
2017
).
19.
V. M. T. S.
Barthem
,
C. V.
Colin
,
H.
Mayaffre
,
M.-H.
Julien
, and
D.
Givord
,
Nat. Commun.
4
,
2892
(
2013
).
20.
B.
Siberchicot
,
S.
Jobic
,
V.
Carteaux
,
P.
Gressier
, and
G.
Ouvrard
,
J. Phys. Chem. A
100
,
5863
5867
(
1996
).
21.
X.
Chen
,
J.
Qi
, and
D.
Shi
,
Phys. Lett A
379
,
60
63
(
2015
).
22.
T. J.
Williams
,
A. A.
Aczel
,
M. D.
Lumsden
,
S. E.
Nagler
,
M. B.
Stone
,
J.-Q.
Yan
, and
D.
Mandrus
,
Phys. Rev. B
92
,
144404
(
2015
).
23.
N.
Sivadas
,
M. W.
Daniels
,
R. H.
Swendsen
,
S.
Okamoto
, and
D.
Xiao
,
Phys. Rev. B
91
,
235425
(
2015
).
24.
S.
Chabungbam
and
P.
Sen
,
Phys. Rev. B
96
,
045404
(
2017
).
25.
W.
Chen
,
Y.
Kawazoe
,
X.
Shi
, and
H.
Pan
,
Phys. Chem. Chem. Phys.
20
,
18348
18354
(
2018
).
26.
C.
Zener
,
Phys. Rev.
82
,
403
(
1951
).
27.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
28.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
30.
M.
Cococcioni
and
S.
De Gironcoli
,
Phys. Rev. B
71
,
035105
(
2005
).
31.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
, and
I.
Dabo
,
J. Phys. Condens. Matter.
21
,
395502
(
2009
).
32.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
1799
(
2006
).
33.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
34.
X.
Gonze
and
C.
Lee
, “
Dynamical matrices
,”
Phys. Rev. B
55
,
10355
(
1997
).
35.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
2643
(
1992
).
36.
R. F. W.
Bader
, “
Atoms in molecules
,”
Acc. Chem. Res.
18
,
9
15
(
1985
).
37.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
38.
K.
Binder
and
D.
Landau
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
Cambridge
,
2009
).
39.
M. E. J.
Newman
and
G. T.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Oxford University Press
,
2001
).
40.
G.
Marsaglia
,
Ann. Math. Stat.
43
,
645
(
1972
).
41.
M.
Topsakal
,
S.
Cahangirov
, and
S.
Ciraci
,
Appl. Phys. Lett.
96
,
091912
(
2010
).
42.
H.
Şahin
,
S.
Cahangirov
,
M.
Topsakal
,
E.
Bekaroglu
,
E.
Akturk
,
R. T.
Senger
, and
S.
Ciraci
,
Phys. Rev. B
80
,
155453
(
2009
).
43.
Q.
Yue
,
J.
Kang
,
Z.
Shao
,
X.
Zhang
,
S.
Chang
,
G.
Wang
,
S.
Qin
, and
J.
Li
,
Phys. Lett A
376
,
1166
1170
(
2012
).
44.
F.
Mouhat
and
F.-X.
Coudert
,
Phys. Rev. B
90
,
224104
(
2014
).

Supplementary Material

You do not currently have access to this content.