The structural, electronic, and magnetic properties of two-dimensional (2D) manganese dibromide (MnBr2) and manganese diiodide (MnI2) are investigated using first principles calculations. The dynamical and thermal stabilities of 2D MnBr2 and MnI2 have been illustrated from the phonon dispersion and molecular dynamic calculations. From the phonon dispersion, three Raman-active and three infrared-active vibration modes are found. The calculated formation energies and cleavage energies indicate that 2D MnBr2 and MnI2 are energetically stable and could be potentially obtained by exfoliation. The hybrid functional theory is employed to discover that 2D MnBr2 and MnI2 are wide gap semiconductors. The magnetic frustration is revealed by the calculation of magnetic exchange interaction and magnetocrystalline anisotropy interaction. By analyzing different magnetic orders, the relatively weak magnetic exchange is attributed to the competition of the direct exchange and the superexchange interaction.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
3.
K. F.
Mak
and
J.
Shan
,
Nat. Photonics
10
,
216
(
2016
).
4.
X.
Xu
,
W.
Yao
,
D.
Xiao
, and
T. F.
Heinz
,
Nat. Phys.
10
,
343
(
2014
).
5.
A. W.
Tsen
,
B.
Hunt
,
Y. D.
Kim
,
Z. J.
Yuan
,
S.
Jia
,
R. J.
Cava
,
J.
Hone
,
P.
Kim
,
C. R.
Dean
, and
A. N.
Pasupathy
,
Nat. Phys.
12
,
208
(
2016
).
6.
Y.
Yu
,
F.
Yang
,
X. F.
Lu
,
Y. J.
Yan
,
Y.-H.
Cho
,
L.
Ma
,
X.
Niu
,
S.
Kim
,
Y.-W.
Son
,
D.
Feng
et al.,
Nat. Nanotechnol.
10
,
270
(
2015
).
7.
X.
Qian
,
J.
Liu
,
L.
Fu
, and
J.
Li
,
Science
346
,
1344
(
2014
).
8.
N. D.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
(
1966
).
9.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
,
Y.
Wang
et al.,
Nature
546
,
265
(
2017
).
10.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
et al.,
Nature
546
,
270
(
2017
).
11.
L.
Casto
,
A.
Clune
,
M.
Yokosuk
,
J.
Musfeldt
,
T.
Williams
,
H.
Zhuang
,
M.-W.
Lin
,
K.
Xiao
,
R.
Hennig
,
B.
Sales
et al.,
APL Mater.
3
,
041515
(
2015
).
12.
I.
Eren
,
F.
Iyikanat
, and
H.
Sahin
,
Phys. Chem. Chem. Phys.
21
,
16718
(
2019
).
13.
F.
Iyikanat
,
M.
Yagmurcukardes
,
R. T.
Senger
, and
H.
Sahin
,
J. Mater. Chem. C
6
,
2019
(
2018
).
14.
C.
Bacaksiz
,
M.
Yagmurcukardes
,
F. M.
Peeters
, and
M. V.
Milosevic
,
2D Mater.
7
,
025029
(
2020
).
15.
M.
Baskurt
,
I.
Eren
,
M.
Yagmurcukardes
, and
H.
Sahin
,
Appl. Surf. Sci.
508
,
144937
(
2020
).
16.
I.
Kézsmárki
,
S.
Bordács
,
P.
Milde
,
E.
Neuber
,
L.
Eng
,
J.
White
,
H. M.
Rønnow
,
C.
Dewhurst
,
M.
Mochizuki
,
K.
Yanai
et al.,
Nat. Mater.
14
,
1116
(
2015
).
17.
S.
Nakatsuji
,
N.
Kiyohara
, and
T.
Higo
,
Nature
527
,
212
(
2015
).
18.
J.
Železný
,
P.
Wadley
,
K.
Olejník
,
A.
Hoffmann
, and
H.
Ohno
,
Nat. Phys.
14
,
220
(
2018
).
19.
M.
Farooq
,
I.
Khan
,
M.
Moaied
, and
J.
Hong
,
Phys. Chem. Chem. Phys.
19
,
29516
(
2017
).
20.
C. R.
Ronda
,
H. H.
Siekman
, and
C.
Haas
,
Physica B+C
144
,
331
(
1987
).
21.
L.
Yongkai
,
C.
Dongyun
,
D.
Xu
,
Q.
Lu
,
H.
Yuan
,
X.
Xiaolu
,
L.
Ji
,
P.
Xianglin
,
Z.
Jingchuan
,
W.
Xiangzhuo
,
L.
Xiang
,
W.
Qinsheng
,
D.
Junxi
,
W.
Zhiwei
,
H.
Junfeng
, and
X.
Wende
,
J. Phys. Condens. Matter
32
,
335803
(
2020
).
22.
V. V.
Kulish
and
W.
Huang
,
J. Mater. Chem. C
5
,
8734
(
2017
).
23.
A. S.
Botana
and
M. R.
Norman
,
Phys. Rev. Mater.
3
,
044001
(
2019
).
24.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
25.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
28.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
(
2015
).
29.
R.
Wyckoff
,
Cryst. Struct.
1
,
85
(
1963
).
30.
Y.
Wen
,
Z.
Liu
,
Y.
Zhang
,
C.
Xia
,
B.
Zhai
,
X.
Zhang
,
G.
Zhai
,
C.
Shen
,
P.
He
,
R.
Cheng
,
L.
Yin
,
Y.
Yao
,
M.
Sendeku
,
Z.
Wang
,
X.
Ye
,
C.
Liu
,
C.
Jiang
,
C.
Shan
,
Y.
Long
, and
J.
He
,
Nano Lett.
20
,
3130
(
2020
).
31.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
32.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
33.
O. I.
Utesov
and
A. V.
Syromyatnikov
,
Phys. Rev. B
95
,
214420
(
2017
).
34.
J. M. D.
Coey
,
M.
Venkatesan
, and
C. B.
Fitzgerald
,
Nat. Mater.
4
,
173
(
2005
).
35.
H.-X.
Deng
,
J.
Li
,
S.-S.
Li
,
J.-B.
Xia
,
A.
Walsh
, and
S.-H.
Wei
,
Appl. Phys. Lett.
96
,
162508
(
2010
).
36.
A.
Walsh
,
J. L.
Da Silva
, and
S.-H.
Wei
,
Phys. Rev. Lett.
100
,
256401
(
2008
).
37.
J. B.
Goodenough
,
Phys. Rev.
100
,
564
(
1955
).
38.
J.
Kanamori
,
J. Phys. Chem. Solids
10
,
87
(
1959
).
39.
P. W.
Anderson
,
Phys. Rev.
115
,
2
(
1959
).
40.
A. B.
Harris
,
Phys. Rev. B
76
,
054447
(
2007
).
41.
X.
Wu
,
Y.
Cai
,
Q.
Xie
,
H.
Weng
,
H.
Fan
, and
J.
Hu
,
Phys. Rev. B
86
,
134413
(
2012
).

Supplementary Material

You do not currently have access to this content.