The carrier lifetime is an important parameter for high voltage SiC bipolar devices because its distribution in drift layers affects the device performance. Observation techniques for carrier lifetime, along with the development of carrier lifetime control processes, are important to control carrier lifetime distribution. In this study, we developed a microscopic time-resolved free carrier absorption system that has a variable spot size of excitation light and two different probe light wavelengths (405 and 637 nm). By selecting a relatively small spot size of excitation light and the probe light of shorter wavelength (405 nm), the distribution of carrier lifetime was observed with a high spatial resolution of ∼3 μm. Additionally, by using a relatively large spot size of excitation light and the probe light that leads to stronger free carrier absorption (637 nm), an accurate measurement of carrier lifetime was obtained. The developed system enables the design and development of bipolar SiC devices with carrier lifetime distribution control.

1.
T.
Kimoto
,
Jpn. J. Appl. Phys.
58
,
018002
(
2019
).
2.
M.
Saggio
,
V.
Raineri
,
R.
Letor
, and
F.
Frisina
,
IEEE Electron Device Lett.
18
,
333
(
1997
).
3.
H.
Tsuchida
,
I.
Kamata
,
T.
Miyazawa
,
M.
Ito
,
X.
Zhang
, and
M.
Nagano
,
Mater. Sci. Semicond. Process.
78
,
2
(
2018
).
4.
T.
Miyazawa
,
T.
Tawara
,
R.
Takanashi
, and
H.
Tsuchida
,
Appl. Phys. Express
9
,
111301
(
2016
).
5.
K.
Nakayama
,
T.
Hatakeyama
,
Y.
Yonezawa
,
H.
Okumura
, and
H.
Tsuchida
, Extended Abstract of ICSCRM2017, TH.D1.9.
6.
K.
Murata
,
T.
Tawara
,
A.
Yang
,
R.
Takanashi
,
T.
Miyazawa
, and
H.
Tsuchida
,
J. Appl. Phys.
126
,
045711
(
2019
).
7.
M.
Kato
,
A.
Yoshida
, and
M.
Ichimura
,
Jpn. J. Appl. Phys.
51
,
02BP12
(
2012
).
8.
Y.
Mori
,
M.
Kato
, and
M.
Ichimura
,
J. Phys. D Appl. Phys.
47
,
335102
(
2014
).
9.
Y.
Ichikawa
,
M.
Ichimura
,
T.
Kimoto
, and
M.
Kato
,
ECS J. Solid State Sci. Technol.
7
,
Q127
(
2018
).
10.
M.
Kato
,
Z.
Xinchi
,
K.
Kohama
,
S.
Fukaya
, and
M.
Ichimura
,
J. Appl. Phys.
127
,
195702
(
2020
).
11.
T.
Kimoto
,
K.
Danno
, and
J.
Suda
,
Phys. Status Solidi B
245
,
1327
(
2008
).
12.
T.
Kimoto
,
Y.
Nanen
,
T.
Hayashi
, and
J.
Suda
,
Appl. Phys. Express
3
,
121201
(
2010
).
13.
T.
Kimoto
,
T.
Hiyoshi
,
T.
Hayashi
, and
J.
Suda
,
J. Appl. Phys.
108
,
083721
(
2010
).
14.
M.
Kushibe
,
J.
Nishio
,
R.
Iijima
,
A.
Miyasaka
,
H.
Asamizu
,
H.
Kitai
,
R.
Kosugi
,
S.
Harada
, and
K.
Kojima
,
Mater. Sci. Forum
924
,
432
435
(
2018
).
15.
S.
Ichikawa
,
K.
Kawahara
,
J.
Suda
, and
T.
Kimoto
,
Appl. Phys. Express
5
,
101301
(
2012
).
16.
T.
Tawara
,
H.
Tsuchida
,
S.
Izumi
,
I.
Kamata
, and
K.
Izumi
,
Mater. Sci. Forum
457-460
,
565
(
2004
).
17.
P. B.
Klein
,
J. Appl. Phys.
103
,
033702
(
2008
).
18.
P. B.
Klein
,
B. V.
Shanabrook
,
S. W.
Huh
,
A. Y.
Polyakov
,
M.
Skowronski
,
J. J.
Sumakeris
, and
M. J.
O’Loughlin
,
Appl. Phys. Lett.
88
,
052110
(
2006
).
19.
T.
Miyazawa
and
H.
Tsuchida
,
J. Appl. Phys.
113
,
083714
(
2013
).
20.
L.
Storasta
and
H.
Tsuchida
,
Appl. Phys. Lett.
90
,
062116
(
2007
).
21.
T.
Miyazawa
,
M.
Ito
, and
H.
Tsuchida
,
Appl. Phys. Lett.
97
,
202106
(
2010
).
22.
P. B.
Klein
,
A.
Shrivastava
, and
T. S.
Sudarshan
,
Phys. Status Solidi A
208
,
2790
(
2011
).
23.
P.
Ščajev
,
V.
Gudelis
,
K.
Jarašiūnas
, and
P. B.
Klein
,
J. Appl. Phys.
108
,
023705
(
2010
).
24.
V.
Grivickas
,
A.
Galeckas
,
V.
Bikbajevas
,
J.
Linnros
, and
J. A.
Tellefsen
,
Thin Solid Films
364
,
181
(
2000
).
25.
A.
Galeckas
,
J.
Linnros
,
V.
Grivickas
,
U.
Lindefelt
, and
C.
Hallin
,
Appl. Phys. Lett.
71
,
3269
(
1997
).
26.
S. S.
Suvanam
,
K.
Gulbinas
,
M.
Usman
,
M. K.
Linnarson
,
D. M.
Martin
,
J.
Linnros
,
V.
Grivickas
, and
A.
Hallén
,
J. Appl. Phys.
117
,
105309
(
2015
).
27.
J.
Linnros
,
J. Appl. Phys.
84
,
275
(
1998
).
28.
A.
Galeckas
,
V.
Grivickas
,
J.
Linnros
,
H.
Bleichner
, and
C.
Hallin
,
J. Appl. Phys.
81
,
3522
(
1997
).
29.
S.
Mae
,
T.
Tawara
,
H.
Tsuchida
, and
M.
Kato
,
Mater. Sci. Forum
924
,
269
(
2018
).
30.
P.
Grivickas
,
K.
Redeckas
,
K.
Gulbinas
,
A. M.
Conway
,
L. F.
Voss
,
M.
Bora
,
S.
Sampayan
,
M.
Vengris
, and
V.
Grivickas
,
J. Appl. Phys.
125
,
225701
(
2019
).
31.
P.
Ščajev
and
K.
Jarašiūnas
,
J. Phys. D Appl. Phys.
46
,
265304
(
2013
).
32.
A.
Galeckas
,
J.
Linnros
,
M.
Frischholz
, and
V.
Grivickas
,
Appl. Phys. Lett.
79
,
365
(
2001
).
33.
P.
Grivickas
,
J.
Linnros
, and
V.
Grivickas
,
J. Mater. Res.
16
,
524
(
2001
).
34.
L.
Subačius
,
K.
Jarašiūnas
,
P.
Ščajev
, and
M.
Kato
,
Meas. Sci. Technol.
26
,
125014
(
2015
).
35.
J.
Linnros
,
P.
Norlin
, and
A.
Hallen
,
IEEE Trans. Electron Devices
40
,
2065
(
1993
).
36.
S.
Limpijumnong
,
W.
Lambrecht
,
S.
Rashkeev
, and
B.
Segall
,
Phys. Rev. B
59
,
12890
(
1999
).
37.
S.
Zollner
,
J. G.
Chen
,
E.
Duda
,
T.
Wetteroth
,
S. R.
Wilson
, and
J. N.
Hilfiker
,
J. Appl. Phys.
85
,
8353
(
1999
).
38.
N.
Kaji
,
H.
Niwa
,
J.
Suda
, and
T.
Kimoto
,
IEEE Trans. Electron Devices
62
,
374
(
2015
).
39.
B.
Zippelius
,
J.
Suda
, and
T.
Kimoto
,
J. Appl. Phys.
111
,
033515
(
2012
).
40.
E.
Saito
,
J.
Suda
, and
T.
Kimoto
,
Appl. Phys. Express
9
,
061303
(
2016
).
41.
H. M.
Ayedh
,
R.
Nipoti
,
A.
Hallén
, and
B. G.
Svensson
,
J. Appl. Phys.
122
,
025701
(
2017
).
42.
K.
Neimontas
,
T.
Malinauskas
,
R.
Aleksiejūnas
,
M.
Sūdžius
,
K.
Jarašiūnas
,
L.
Storasta
,
J. P.
Bergman
, and
E.
Janzen
,
Semicond. Sci. Technol.
21
,
952
(
2006
).
43.
T.
Tawara
,
T.
Miyazawa
,
M.
Ryo
,
M.
Miyazato
,
T.
Fujimoto
,
K.
Takenaka
,
S.
Matsunaga
,
M.
Miyajima
,
A.
Otsuki
,
Y.
Yonezawa
,
T.
Kato
,
H.
Okumura
,
T.
Kimoto
, and
H.
Tsuchida
,
J. Appl. Phys.
120
,
115101
(
2016
).
You do not currently have access to this content.