Grain boundary (GB) engineering is crucial in the austenitic stainless steel (ASS) design for nuclear energy applications. In this work, the influence of different GB structures on radiation defect recombination and radiation-induced segregation (RIS) at different temperatures were investigated using molecular dynamics simulation. Four typical GBs in ASSs were selected as model structures. Results showed that GBs remained stable at various temperatures and they all exhibited better self-healing performance than single crystals in terms of radiation defects. However, except Σ3(112) GB, other three GBs cannot inhibit the radiation induced segregation, while promoting the radiation defect recombination. Calculation results showed that the higher Σ value of GBs can lead to a greater lattice mismatch near GBs, which not only results in stronger sink strength for radiation induced defects, but also provides more sites for solute atoms and causes greater segregations eventually. Owing to the intrinsic low Σ and large inclination angle characteristic, Σ3(112) GB achieves an excellent balance between the defect-absorption and RIS. This phenomenon provides a feasible route for the future GB design in ultra-high radiation tolerant materials.

1.
P.
Yvon
and
F.
Carré
,
J. Nucl. Mater.
385
,
217
(
2009
).
2.
S. J.
Zinkle
and
G. S.
Was
,
Acta. Mater.
61
,
735
(
2013
).
3.
T.
Allen
,
J.
Busby
,
M.
Meyer
, and
D.
Petti
,
Mater. Today
13
,
14
(
2010
).
4.
5.
T.
Liu
,
Q.
Bai
,
X.
Ru
,
S.
Xia
,
X.
Zhong
,
Y.
Lu
, and
T.
Shoji
,
Mater. Sci. Technol.
35
,
477
(
2019
).
6.
M.
Boisson
,
L.
Legras
,
E.
Andrieu
, and
L.
Laffont
,
Corros. Sci.
161
,
108194
(
2019
).
7.
X. Y.
Wang
,
N.
Gao
,
W.
Setyawan
,
B.
Xu
,
W.
Liu
, and
Z. G.
Wang
,
J. Nucl. Mater.
491
,
154
(
2017
).
8.
J.
Lin
,
F.
Chen
,
X.
Tang
,
J.
Liu
,
S.
Shen
, and
G.
Ge
,
Vacuum
174
,
109183
(
2020
).
9.
M.
Samaras
,
P. M.
Derlet
,
H.
Van Swygenhoven
, and
M.
Victoria
,
Phys. Rev. Lett.
88
,
125505
(
2002
).
10.
M.
Samaras
,
P. M.
Derlet
,
H.
Van Swygenhoven
, and
M.
Victoria
,
J. Nucl. Mater.
351
,
47
(
2006
).
11.
X. M.
Bai
,
A. F.
Voter
,
R. G.
Hoagland
,
M.
Nastasi
, and
B. P.
Uberuaga
,
Science.
327
,
1631
(
2010
).
12.
M.
Jin
,
P.
Cao
, and
M. P.
Short
,
Scr. Mater.
163
,
66
(
2019
).
13.
M.
Samaras
,
P. M.
Derlet
,
H.
Van Swygenhoven
, and
M.
Victoria
,
Phys. Rev. B
68
,
224111
(
2003
).
14.
E. P.
Simonen
and
S. M.
Brummer
,
JOM
50
,
52
(
1998
).
15.
C.
Pokor
,
Y.
Brechet
,
P.
Dubuisson
,
J.-P.
Massoud
, and
A.
Barbu
,
J. Nucl. Mater.
326
,
30
(
2004
).
16.
S.
Jublot-Leclerc
,
X.
Li
,
L.
Legras
,
M.-L.
Lescoat
,
F.
Fortuna
, and
A.
Gentils
,
J. Nucl. Mater.
480
,
436
(
2016
).
17.
J.
Malaplate
,
B.
Michaut
,
A.
Renault-Laborne
,
T.
Jourdan
,
F.
Dalle
,
J.
Ribis
,
B.
Radiguet
,
F.
Sefta
, and
B.
Décamps
,
J. Nucl. Mater.
517
,
201
(
2019
).
18.
D. J.
Bacon
,
A. F.
Calder
,
F.
Gao
,
V. G.
Kapinos
, and
S. J.
Wooding
,
Nucl. Instrum. Methods Phys. Res. Sect. B
102
,
37
(
1995
).
19.
M.
Samaras
,
P. M.
Derlet
,
H.
Van Swygenhoven
, and
M.
Victoria
,
Philos. Mag.
83
,
3599
(
2003
).
20.
B. N.
Singh
and
A. J. E.
Foreman
,
Philos. Mag.
29
(
4
),
847
(
1974
).
21.
T.
Toyama
,
Y.
Nozawa
,
W.
Van Renterghem
,
Y.
Matsukawa
,
M.
Hatakeyama
,
Y.
Nagai
,
A.
Al Mazouzi
, and
S.
Van Dyck
,
J. Nucl. Mater.
425
,
71
(
2012
).
22.
W. Z.
Han
,
M. J.
Demkowicz
,
E. G.
Fu
,
Y. Q.
Wang
, and
A.
Misra
,
Acta Mater.
60
,
6341
(
2012
).
23.
A. J.
Ardell
and
P.
Bellon
,
Curr. Opin. Solid State Mater. Sci.
20
,
115
(
2016
).
24.
G. S.
Was
,
J. P.
Wharry
,
B.
Frisbie
,
B. D.
Wirth
,
D.
Morgan
,
J. D.
Tucker
, and
T. R.
Allen
,
J. Nucl. Mater.
411
,
41
(
2011
).
25.
S. M.
Bruemmer
,
E. P.
Simonen
,
P. M.
Scott
,
P. L.
Andresen
,
G. S.
Was
, and
J. L.
Nelson
,
J. Nucl. Mater.
274
,
299
(
1999
).
26.
T. S.
Duh
,
J. J.
Kai
,
F. R.
Chen
, and
L. H.
Wang
,
J. Nucl. Mater.
258
,
2064
(
1998
).
27.
J. J.
Kai
,
F. R.
Chen
, and
T. S.
Duh
,
Mater. Trans.
45
,
40
(
2004
).
28.
S.
Watanabe
,
Y.
Takamatsu
,
N.
Sakaguchi
, and
H.
Takahashi
,
J. Nucl. Mater.
283
,
152
(
2000
).
29.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
30.
P.
Hirel
,
Comput. Phys. Commun.
197
,
212
(
2015
).
31.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
32.
A. V.
Bakaev
,
D. A.
Terent’ev
,
E. E.
Zhurkin
, and
P. Y.
Grigor’ev
,
J. Surf. Invest.
7
(
2
),
211
(
2013
).
33.
A.
Jelea
,
Nucl. Instrum. Methods Phys. Res. Sect. B
425
,
50
(
2018
).
34.
C. M.
Barr
,
G. A.
Vetterick
,
K. A.
Unocic
,
K.
Hattar
,
X.-M.
Bai
, and
M. L.
Taheri
,
Acta Mater.
67
,
145
(
2014
).
35.
G.
Bonny
,
N.
Castin
, and
D.
Terentyev
,
Modell. Simul. Mater. Sci. Eng.
21
,
085004
(
2013
).
36.
Y.
Shibuta
,
S.
Takamoto
, and
T.
Suzuki
,
ISIJ Int.
48
,
1582
(
2008
).
37.
C. P.
Xu
,
X.-Y.
Liu
,
F.
Gao
,
Y. H.
Li
, and
Y. Q.
Wang
,
Nucl. Instrum. Methods Phys. Res. Sect. B
332
,
426
(
2014
).
38.
H.
Huang
,
X.
Tang
,
F.
Chen
,
J.
Liu
, and
D.
Chen
,
J. Nucl. Mater.
493
,
322
(
2017
).
39.
N.
Swaminathan
,
P. J.
Kamenski
,
D.
Morgan
, and
I.
Szlufarska
,
Acta Mater.
58
(
8
),
2843
(
2010
).
40.
H.
Huang
,
X.
Tang
,
F.
Chen
,
Y.
Yang
,
J.
Liu
,
H.
Li
, and
D.
Chen
,
J. Nucl. Mater.
460
,
16
(
2015
).
41.
K.
Vörtler
,
N.
Juslin
,
G.
Bonny
,
L.
Malerba
, and
K.
Nordlund
,
J. Phys. Condens. Matter
23
,
355007
(
2011
).
42.
Y. Y.
Dai
,
L.
Ao
,
Q. Q.
Sun
,
J. L.
Nie
,
S. M.
Peng
 et al,
Comp. Mater. Sci.
101
,
293
(
2015
).
43.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
(
1987
).
44.
K.
Nordlund
,
M.
Ghaly
,
R. S.
Averback
,
M.
Caturla
,
T. D.
de La Rubia
, and
J.
Tarus
,
Phys. Rev. B
57
,
7556
(
1998
).
45.
X.
Li
,
W.
Liu
,
Y.
Xu
,
C. S.
Liu
,
Q. F.
Fang
,
B. C.
Pan
,
J. L.
Chen
,
G. N.
Luo
, and
Z.
Wang
,
Nucl. Fusion
53
,
123014
(
2013
).
46.
H.
Huang
,
X.
Tang
,
F.
Chen
,
F.
Gao
,
Q.
Peng
,
L.
Ji
, and
X.
Sun
,
J. Alloys Compd.
765
,
253
(
2018
).
47.
D. S.
Aidhy
,
C.
Lu
,
K.
Jin
,
H.
Bei
,
Y.
Zhang
,
L.
Wang
, and
W. L.
Weber
,
Acta Mater.
99
,
69
(
2015
).
48.
D. S.
Aidhy
,
P. C.
Millett
,
T.
Desai
,
D.
Wolf
, and
S. R.
Phillpot
,
Phys. Rev. B
80
,
104107
(
2009
).
49.
C. C.
Fu
,
J. Dalla
Torre
,
F.
Willaime
,
J. L.
Bocquet
, and
A.
Barbu
,
Nat. Mater.
4
,
68
(
2005
).
50.
R. W.
Balluffi
,
J. Nucl. Mater.
69
,
240
(
1978
).
51.
G.
Hasson
,
J.-Y.
Boos
,
I.
Herbeuval
,
M.
Biscondi
, and
C.
Goux
,
Surf. Sci.
31
,
115
(
1972
).
52.
J. D.
Rittner
and
D. N.
Seidman
,
Phys. Rev. B
54
,
6999
(
1996
).
53.
M. S.
Laws
and
P. J.
Goodhew
,
Acta Metall. Mater.
39
,
1525
(
1991
).
54.
K. G.
Field
,
Y.
Yang
,
T. R.
Allen
, and
J. T.
Busby
,
Acta Mater.
89
,
438
(
2015
).
55.
V. V.
Bulatov
,
B. W.
Reed
, and
M.
Kumar
,
Acta Mater.
65
,
161
(
2014
).
56.
M. A.
Tschopp
,
M. F.
Horstemeyer
,
F.
Gao
,
X.
Sun
, and
M.
Khaleel
,
Scr. Mater.
64
,
908
(
2011
).
57.
L.
Zhang
,
C.
Lu
,
K.
Tieu
, and
Y.
Shibuta
,
Scr. Mater.
144
,
78
(
2018
).
58.
M. J.
Demkowicz
,
O.
Anderoglu
,
X.
Zhang
, and
A.
Misra
,
J. Mater. Res.
26
,
1666
(
2011
).
59.
P. A.
Thorsen
,
J. B.
Bilde-Sørensen
, and
B. N.
Singh
,
Scr. Mater.
51
,
557
(
2004
).
60.
P. A.
Thorsen
,
J. B.
Bilde-Sorensen
, and
B. N.
Singh
,
Mater. Sci. Forum
207
,
445
(
1996
).
61.
H.
Wiedersich
,
P. R.
Okamoto
, and
N. Q.
Lam
,
J. Nucl. Mater.
83
,
98
(
1979
).
62.
T. R.
Allen
and
G. S.
Was
,
Acta Mater.
46
,
3679
(
1998
).
63.
T. R.
Allen
,
J. T.
Busby
,
G. S.
Was
, and
E. A.
Kenik
,
J. Nucl. Mater.
255
,
44
(
1998
).
64.
N.
Sakaguchi
,
M.
Endo
,
S.
Watanabe
,
H.
Kinoshita
,
S.
Yamashita
, and
H.
Kokawa
,
J. Nucl. Mater.
434
,
65
(
2013
).
65.
K.
Fukuya
,
M.
Nakano
,
K.
Fujii
, and
T.
Torimaru
,
J. Nucl. Sci. Technol.
41
,
594
(
2004
).
66.
T. S.
Duh
,
J. J.
Kai
, and
F. R.
Chen
,
J. Nucl. Mater.
283
,
198
(
2000
).
67.
H.-H.
Jin
,
E.
Ko
,
S.
Lim
,
J.
Kwon
, and
C.
Shin
,
J. Nucl. Mater.
493
,
239
(
2017
).
68.
A.
Esfandiarpour
,
S. A. H.
Feghhi
, and
A. A.
Shokri
,
Nucl. Instrum. Methods Phys. Res. Sect. B
362
,
1
(
2015
).
69.
A.
Arjhangmehr
,
S. A. H.
Feghhi
,
A.
Esfandiyarpour
, and
F.
Hatami
,
J. Mater. Sci.
51
(
2
),
1017
(
2016
).
70.
B. P.
Uberuaga
,
S.
Choudhury
, and
A.
Caro
,
J. Nucl. Mater.
462
,
402
(
2015
).

Supplementary Material

You do not currently have access to this content.