Resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a promising technique for the physical vapor deposition of hybrid organic–inorganic perovskites. The approach already has been used to deposit both three-dimensional and two-dimensional hybrid perovskites with material quality comparable to those synthesized by solution processing. However, the phenomenological mechanisms of hybrid perovskite film formation by RIR-MAPLE have not been articulated. Therefore, this work presents a careful investigation of film formation mechanisms of three-dimensional methylammonium lead halide perovskites by considering the temporal evolution of morphology, crystallinity, and optical properties of films deposited by RIR-MAPLE.
REFERENCES
1.
W.
Li
, Z.
Wang
, F.
Deschler
, S.
Gao
, R. H.
Friend
, and A. K.
Cheetham
, Nat. Rev. Mater.
2
(3
), 16099
(2017
). 2.
G. E.
Eperon
, S. D.
Stranks
, C.
Menelaou
, M. B.
Johnston
, L. M.
Herz
, and H. J.
Snaith
, Energy Environ. Sci.
7
(3
), 982
–982
(2014
). 3.
M. A.
Green
, A.
Ho-Baillie
, and H. J.
Snaith
, Nat. Photonics
8
(7
), 506
–514
(2014
). 4.
S. D.
Stranks
, G. E.
Eperon
, G.
Grancini
, C.
Menelaou
, M. J. P.
Alcocer
, T.
Leijtens
, L. M.
Herz
, A.
Petrozza
, and H. J.
Snaith
, Science
342
(6156
), 341
–344
(2013
). 5.
W. J.
Yin
, T.
Shi
, and Y.
Yan
, Adv. Mater.
26
(27
), 4653
–4658
(2014
). 6.
J.
Huang
, Y.
Yuan
, Y.
Shao
, and Y.
Yan
, Nat. Rev. Mater.
2
(7
), 17042
(2017
). 7.
T. M.
Brenner
, D. A.
Egger
, L.
Kronik
, G.
Hodes
, and D.
Cahen
, Nat. Rev. Mater.
1
(1
), 15007
(2016
). 8.
D. B.
Mitzi
, C. A.
Feild
, W. T. A.
Harrison
, and A. M.
Guloy
, Nature
369
(6480
), 467
–469
(1994
). 9.
D. B.
Mitzi
, S.
Wang
, C. A.
Feild
, C. A.
Chess
, and A. M.
Guloy
, Science
267
(5203
), 1473
(1995
). 10.
Y.
Wu
, J.
Li
, J.
Xu
, Y.
Du
, L.
Huang
, J.
Ni
, H.
Cai
, and J.
Zhang
, RSC Adv.
6
(20
), 16243
–16249
(2016
). 11.
A.
Kojima
, K.
Teshima
, Y.
Shirai
, and T.
Miyasaka
, J. Am. Chem. Soc.
131
(17
), 6050
–6051
(2009
). 12.
H. J.
Snaith
, Nat. Mater.
17
(5
), 372
–376
(2018
). 13.
M.
Yuan
, L. N.
Quan
, R.
Comin
, G.
Walters
, R.
Sabatini
, O.
Voznyy
, S.
Hoogland
, Y.
Zhao
, E. M.
Beauregard
, P.
Kanjanaboos
, Z.
Lu
, D. H.
Kim
, and E. H.
Sargent
, Nat. Nano
11
(10
), 872
–877
(2016
). 14.
D.
Liang
, Y.
Peng
, Y.
Fu
, M. J.
Shearer
, J.
Zhang
, J.
Zhai
, Y.
Zhang
, R. J.
Hamers
, T. L.
Andrew
, and S.
Jin
, ACS Nano
10
(7
), 6897
–6904
(2016
). 15.
M.
Saliba
, S. M.
Wood
, J. B.
Patel
, P. K.
Nayak
, J.
Huang
, J. A.
Alexander-Webber
, B.
Wenger
, S. D.
Stranks
, M. T.
Hörantner
, J. T.
Wang
, R. J.
Nicholas
, L. M.
Herz
, M. B.
Johnston
, S. M.
Morris
, H. J.
Snaith
, and M. K.
Riede
, Adv. Mater.
28
(5
), 923
–929
(2016
). 16.
B. R.
Sutherland
and E. H.
Sargent
, Nat. Photonics
10
(5
), 295
–302
(2016
). 17.
X.
Zhu
, Y.
Lin
, J.
San Martin
, Y.
Sun
, D.
Zhu
, and Y.
Yan
, Nat. Commun.
10
(1
), 2843
(2019
). 18.
H.
Wang
and D. H.
Kim
, Chem. Soc. Rev.
46
(17
), 5204
–5236
(2017
). 19.
Z.
Li
, T. R.
Klein
, D. H.
Kim
, M.
Yang
, J. J.
Berry
, M. F. A. M.
van Hest
, and K.
Zhu
, Nat. Rev. Mater.
3
(4
), 18017
(2018
). 20.
W. A.
Dunlap-Shohl
, Y.
Zhou
, N. P.
Padture
, and D. B.
Mitzi
, Chem. Rev.
119
(5
), 3193
–3295
(2019
). 21.
E. T.
Barraza
, W. A.
Dunlap-Shohl
, D. B.
Mitzi
, and A. D.
Stiff-Roberts
, J. Electron. Mater.
47
(2
), 917
–926
(2018
). 22.
W. A.
Dunlap-Shohl
, E. T.
Barraza
, A.
Barrette
, K.
Gundogdu
, A. D.
Stiff-Roberts
, and D. B.
Mitzi
, ACS Energy Lett.
3
(2
), 270
–275
(2018
). 23.
W. A.
Dunlap-Shohl
, E. T.
Barraza
, A.
Barrette
, S.
Dovletgeldi
, G.
Findik
, D. J.
Dirkes
, C.
Liu
, M. K.
Jana
, V.
Blum
, W.
You
, K.
Gundogdu
, A. D.
Stiff-Roberts
, and D. B.
Mitzi
, Mater. Horiz.
6
, 1707
–1716
(2019
). 24.
A. D.
Stiff-Roberts
and N. E.
Wright
, Proc. SPIE
11085
, 110850R
(2019
). 25.
A. D.
Stiff-Roberts
and W.
Ge
, Appl. Phys. Rev.
4
(4
), 041303
(2017
). 26.
A. P.
Caricato
, W.
Ge
, and A. D.
Stiff-Roberts
, in Advances in the Application of Lasers in Materials Science
, edited by P. M.
Ossi
(Springer International Publishing
, Cham
, 2018
), pp. 275
–308
.27.
A.
Piqué
, R. A.
McGill
, D. B.
Chrisey
, D.
Leonhardt
, T. E.
Mslna
, B. J.
Spargo
, J. H.
Callahan
, R. W.
Vachet
, R.
Chung
, and M. A.
Bucaro
, Thin Solid Films
355–356
, 536
–541
(1999
). 28.
D. M.
Bubb
, P. K.
Wu
, J. S.
Horwitz
, J. H.
Callahan
, M.
Galicia
, A.
Vertes
, R. A.
McGill
, E. J.
Houser
, B. R.
Ringeisen
, and D. B.
Chrisey
, J. Appl. Phys.
91
(4
), 2055
–2058
(2002
). 29.
B.
Toftmann
, M. R.
Papantonakis
, R. C. Y.
Auyeung
, W.
Kim
, S. M.
O'Malley
, D. M.
Bubb
, J. S.
Horwitz
, J.
Schou
, P. M.
Johansen
, and R. F.
Haglund
, Thin Solid Films
453–454
, 177
–181
(2004
). 30.
D. M.
Bubb
, S. M.
O'Malley
, C.
Antonacci
, D.
Simonson
, and R. A.
McGill
, J. Appl. Phys.
95
(4
), 2175
–2177
(2004
). 31.
R.
Pate
and A. D.
Stiff-Roberts
, Chem. Phys. Lett.
477
(4–6
), 406
–410
(2009
). 32.
R.
Pate
, K. R.
Lantz
, and A. D.
Stiff-Roberts
, Thin Solid Films
517
(24
), 6798
–6802
(2009
). 33.
R. D.
McCormick
, J.
Lenhardt
, and A. D.
Stiff-Roberts
, Polymers
4
(1
), 341
–354
(2012
). 34.
R. D.
McCormick
, E. D.
Cline
, A. S.
Chadha
, W.
Zhou
, and A. D.
Stiff-Roberts
, Macromol. Chem. Phys.
214
(23
), 2643
–2650
(2013
). 35.
Q.
Yu
, W.
Ge
, A.
Atewologun
, G. P.
López
, and A. D.
Stiff-Roberts
, J. Mater. Chem. B
2
(27
), 4371
–4378
(2014
). 36.
W.
Ge
, A.
Atewologun
, and A. D.
Stiff-Roberts
, Org. Electron.
22
, 98
–107
(2015
). 37.
W.
Ge
, N. K.
Li
, R. D.
McCormick
, E.
Lichtenberg
, Y. G.
Yingling
, and A. D.
Stiff-Roberts
, ACS Appl. Mater. Interfaces
8
(30
), 19494
–19506
(2016
). 38.
T. E.
Itina
, L. V.
Zhigilei
, and B. J.
Garrison
, Nucl. Instrum. Methods Phys. Res. Sect. B
180
(1
), 238
–244
(2001
). 39.
M.
Caputo
, N.
Cefarin
, A.
Radivo
, N.
Demitri
, L.
Gigli
, J. R.
Plaisier
, M.
Panighel
, G.
Di Santo
, S.
Moretti
, A.
Giglia
, M.
Polentarutti
, F.
De Angelis
, E.
Mosconi
, P.
Umari
, M.
Tormen
, and A.
Goldoni
, Sci. Rep.
9
(1
), 15159
(2019
). 40.
S.
Tombe
, G.
Adam
, H.
Heilbrunner
, D. H.
Apaydin
, C.
Ulbricht
, N. S.
Sariciftci
, C. J.
Arendse
, E.
Iwuoha
, and M. C.
Scharber
, J. Mater. Chem. C
5
(7
), 1714
–1723
(2017
). 41.
W.
Li
, D.
Lan
, and Y.
Wang
, Phys. Rev. E
95
(4
), 042607
(2017
). 42.
A.
Stannard
, J. Phys. Condens. Matter
23
(8
), 083001
(2011
). 43.
P.
Yunker
, T.
Still
, M.
Lohr
, and A.
Yodh
, Nature
476
, 308
–311
(2011
). 44.
R. G.
Larson
, AIChE J.
60
(5
), 1538
–1571
(2014
). 45.
P.
Kralchevsky
and N.
Denkov
, Curr. Opin. Colloids Interface Sci.
6
, 383
–401
(2001
). 46.
A.
Senocrate
, G. Y.
Kim
, M.
Grätzel
, and J.
Maier
, ACS Energy Lett.
4
(12
), 2859
–2870
(2019
). 47.
R.
Segovia
, G.
Qu
, M.
Peng
, X.
Sun
, H.
Shi
, and B.
Gao
, Nanoscale Res. Lett.
13
(1
), 79
(2018
). 48.
D.
Täuber
, A.
Dobrovolsky
, R.
Camacho
, and I. G.
Scheblykin
, Nano Lett.
16
(8
), 5087
–5094
(2016
). 49.
D.
Hong
, J.
Li
, S.
Wan
, I. G.
Scheblykin
, and Y.
Tian
, J. Phys. Chem. C
123
(19
), 12521
–12526
(2019
). 50.
J. N.
Fru
, N.
Nombona
, and M.
Diale
, Phys. B Condens. Matter
578
, 411884
(2020
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.