Electrocaloric and pyroelectric effects of the relaxor 0.55Pb-Mg1/3Nb2/3O3–0.45PbSc1/2Nb1/2O3 (PMN–PSN) bulk and multilayer ceramic (MLC) structures in their connection with the microstructure are reported. The electrocaloric measurements were performed using the mid-infrared radiation (MIR) technique developed and introduced by the authors. The comparison of the electrocaloric temperature change δТ and pyroelectric coefficient p vs temperature dependences of bulk and MLC samples shows a large difference in their temperature behavior. It is shown that significant smearing of these dependences is determined by the microstructure (grain size and grain size distribution) of both bulk and MLC samples. The predicted cooling power of the PMN–PSN MLC can reach Qmax = 1370 mW with reasonable MLC geometry (the number of layers n = 200, the effective length of L = 3.3 mm) and taking into account experimentally obtained δТ = 1.2 °C at a relatively low electric field of 68 kV/cm. Both large values for δТ at ambient temperatures and the estimated cooling power characterize the PMN–PSN MLC as a promising unit for electrocaloric cooling devices.

1.
X.
Moya
and
N. D.
Mathur
, “
Preface to special topic: Caloric materials
,”
APL Mater.
4
,
063701
(
2016
).
2.
M.
Valant
, “
Electrocaloric materials for future solid-state refrigeration technologies
,”
Prog. Mater. Sci.
57
,
980
1009
(
2012
).
3.
W. N.
Lawless
, “
Specific heat and electrocaloric properties of KTaO3 at low temperatures
,”
Phys. Rev. B
16
,
433
(
1977
).
4.
A. S.
Mischenko
,
Q.
Zhang
,
J. F.
Scott
,
R. W.
Whatmore
, and
N. D.
Mathur
, “
Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3
,”
Science
311
,
1270
1271
(
2006
).
5.
J. F.
Scott
, “
Electrocaloric materials annual review of materials research
,”
Annu. Rev. Mater. Res.
41
,
229
240
(
2011
).
6.
X.
Moya
,
S.
Kar-Narayan
, and
N. D.
Mathur
, “
Caloric materials near ferroic phase transitions
,”
Nat. Mater.
13
,
439
450
(
2014
).
7.
G. S.
Lin
,
X. M.
Xiong
,
J. X.
Zhang
, and
Q.
Wei
, “
Latent heat study of phase transition in Ba0.73Sr0.27TiO3 induced by electric field
,”
J. Therm. Anal. Calorim.
81
,
41
44
(
2005
).
8.
E. P.
Smirnova
,
G. Y.
Sotnikova
,
N. V.
Zaitseva
,
A. A.
Kapralov
, and
G. A.
Gavrilov
, “
Electrocaloric effect in BaTiO3–SrTiO3 solid solution
,”
Tech. Phys. Lett.
44
,
60
62
(
2018
).
9.
G. A.
Smolenskii
,
Ferroelectrics and Related Materials
(
Gordon and Breach Science Publishers
,
New York
,
NY
,
1984
). http://worldcat.org/isbn/9782881241079.
10.
L.
Shebanovs
,
K.
Borman
,
W. N.
Lawless
, and
A.
Kalvane
, “
Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors
,”
Ferroelectrics
273
,
137
142
(
2002
).
11.
D. Q.
Xiao
,
Y. C.
Wang
,
R. L.
Zhang
,
S. Q.
Peng
,
J. G.
Zhu
, and
B.
Yang
, “
Electrocaloric properties of (1-x) Pb(Mg1/3Nb2/3)O3–(x) PbTiO3 ferroelectric ceramics near room temperature
,”
Mater. Chem. Phys.
57
,
182
185
(
1998
).
12.
Y.
Bai
,
D.
Wei
, and
L.-J.
Qiao
, “
Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3–PbTiO3 by phase composition and crystal orientation
,”
Appl. Phys. Lett.
107
,
192904
(
2015
).
13.
L.
Shaobo
and
L.
Yanqiu
, “
Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcoolers
,”
Mater. Sci. Eng. B
113
,
46
49
(
2004
).
14.
L.
Luo
,
H.
Chen
,
Y.
Zhu
,
W.
Li
,
H.
Luo
, and
Y.
Zhang
, “
Pyroelectric and electrocaloric effect of [111]-oriented 0.9PMN-0.1PT single crystal
,”
J. Alloys Compd.
509
,
8149
8152
(
2011
).
15.
S.
Kar-Narayan
and
N. D.
Mathur
, “
Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials
,”
Appl. Phys. Lett.
95
,
242903
(
2009
).
16.
E.
Defay
,
R.
Faye
,
G.
Despesse
,
H.
Strozyk
,
D.
Sette
,
S.
Crossley
,
X.
Moya
, and
N. D.
Mathur
, “
Enhanced electrocaloric efficiency via energy recovery
,”
Nat. Commun.
9
,
1827
(
2018
).
17.
X.
Moya
,
E.
Defay
,
N. D.
Mathur
, and
S.
Hirose
, “
Electrocaloric effects in multilayer capacitors for cooling applications
,”
MRS Bull.
43
,
291
294
(
2018
).
18.
T.
Zhang
,
X.-S.
Qian
,
H.
Gu
,
Y.
Hou
, and
Q. M.
Zhang
, “
An electrocaloric refrigerator with direct solid to solid regeneration
,”
Appl. Phys. Lett.
110
,
243503
(
2017
).
19.
S.
Kar-Narayan
,
S.
Crossley
,
X.
Moya
,
V.
Kovacova
,
J.
Abergel
,
A.
Bontempi
,
N.
Baier
,
E.
Defay
, and
N. D.
Mathur
, “
Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging
,”
Appl. Phys. Lett.
102
,
032903
(
2013
).
20.
P.
Blumenthal
,
C.
Molin
,
S.
Gebhardt
, and
A.
Raatz
, “
Active electrocaloric demonstrator for direct comparison of PMN-PT bulk and multilayer samples
,”
Ferroelectrics
497
,
1
8
(
2016
).
21.
L.
Fulanović
,
S.
Drnovšek
,
H.
Uršič
,
M.
Vrabelj
,
D.
Kuščer
,
K.
Makarovič
,
V.
Bobnar
,
Z.
Kutnjak
, and
B.
Malič
, “
Multilayer 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 elements for electrocaloric cooling
,”
J. Eur. Ceram. Soc.
37
,
599
603
(
2017
).
22.
T.
Usui
,
S.
Hirose
,
A.
Ando
,
S.
Crossley
,
B.
Nair
,
X.
Moya
, and
N. D.
Mathur
, “
Effect of inactive volume on thermocouple measurements of electrocaloric temperature change in multilayer capacitors of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3
,”
J. Phys. D Appl. Phys.
50
,
424002
(
2017
).
23.
B.
Nair
,
T.
Usui
,
S.
Crossley
,
S.
Kurdi
,
G. G.
Guzmán-Verri
,
X.
Moya
,
S.
Hirose
, and
N. D.
Mathur
, “
Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range
,”
Nature
575
,
468
472
(
2019
).
24.
S.
Kar-Narayan
and
N. D.
Mathur
, “
Direct and indirect electrocaloric measuring using multilayer capacitors
,”
J. Phys. D Appl. Phys.
43
(
1–4
),
032002
(
2010
).
25.
N. A. S.
Smith
,
M. K.
Rokosz
, and
T. M.
Correia
, “
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
,”
J. Appl. Phys.
116
,
044511
(
2014
).
26.
Y.
Liu
,
H.
Strozyk
,
B.
Dkhil
, and
E.
Defay
, “
Insight into electrocaloric cooling power in multilayer capacitors using infra-red camera
,”
Appl. Phys. Lett.
109
,
212902
(
2016
).
27.
C.
Molin
,
P.
Neumeister
,
H.
Neubert
, and
S. E.
Gebhardt
, “
Multilayer ceramics for electrocaloric cooling applications
,”
Energy Technol.
6
,
1543
1552
(
2018
).
28.
S. L.
Swartz
and
T. R.
Shrout
, “
Fabrication of perovskite lead magnesium niobate
,”
Mater. Res. Bull.
17
,
1245
1250
(
1982
).
29.
S.
Crossley
,
J. R.
McGinnigle
,
S.
Kar-Narayan
, and
N. D.
Mathur
, “
Finite-element optimisation of electrocaloric multilayer capacitors
,”
Appl. Phys. Lett.
104
,
082909
(
2014
).
30.
N.
Setter
and
L. E.
Cross
, “
The contribution of structural disorder to diffuse phase transitions in ferroelectrics
,”
J. Mater. Sci.
15
,
2478
2482
(
1980
).
31.
G. Y.
Sotnikova
,
G. A.
Gavrilov
,
A. A.
Kapralov
,
K. L.
Muratikov
, and
E. P.
Smirnova
, “
Mid-Infrared radiation technique for direct pyroelectric and electrocaloric measurements
,”
Rev. Sci. Instrum.
91
,
015119
(
2020
).
32.
G. Y.
Sotnikova
,
G. A.
Gavrilov
,
A. A.
Kapralov
, and
E. P.
Smirnova
, “
Direct measurements of the dynamics of the electrocaloric response of ferroelectrics under conditions of arbitrary heat transfer
,”
Tech. Phys. Lett.
45
,
963
966
(
2019
).
33.
G.
Yu. Sotnikova
,
S. E.
Aleksandrov
, and
G. A.
Gavrilov
, “
А3в5 photodiode sensors for low-temperature pyrometry
,”
Proc. SPIE
8073
,
A3B5
(
2011
).
34.
S. B.
Lang
and
D. K.
Das-Gupta
, “
A technique for determining the polarization distribution in thin polymer electrets using periodic heating
,”
Ferroelectrics
39
,
1249
1252
(
1981
).
35.
E. P.
Smirnova
,
S. E.
Aleksandrov
,
K. A.
Sotnikov
,
A. A.
Kapralov
, and
A. V.
Sotnikov
, “
Pyroelectric effect in lead-magnoniobate-based solid solutions
,”
Phys. Solid State
45
,
1305
1309
(
2003
).
36.
E. P.
Smirnova
,
G.
Yu. Sotnikova
,
N. V.
Zaitseva
,
A. A.
Kapralov
,
G. A.
Gavrilov
, and
A. V.
Sotnikov
, “
Electrocaloric effect in a lead magnoniobate-scandoniobate relaxor
,”
Phys. Solid State
60
,
2006
2011
(
2018
).
37.
E. P.
Smirnova
,
G.
Yu. Sotnikova
,
N. V.
Zaitseva
,
G. A.
Gavrilov
, and
A. V.
Sotnikov
, “
Pyroelectric and electrocaloric effects in PMN-PbTiO3-SrTiO3 solid solutions
,”
Phys. Solid State
61
,
1766
1771
(
2019
).
38.
G. A.
Gavrilov
,
G.
Yu. Sotnikova
,
A. V.
Sotnikov
, and
E. P.
Smirnova
, “
Interrelation of electrocaloric and concomitant effects in lead magnesium niobate based ceramics
,”
J. Mater. Sci.
55
,
6783
6793
(
2020
).
39.
Y. M.
Poplavko
,
Physics of Active Dielectrics. V. 1: Polarization, Conduction, Losses, Breakdown
(
LAP LAMBERT Academic Publishing
,
2015
). ISBN-10: 3659763748; ISBN-13: 978-3659763748
40.
R.
Hull
,
P.
Keblinski
,
D.
Lewis
,
A.
Maniatty
,
V.
Meunier
,
A. A.
Oberai
,
C. R.
Picu
,
J.
Samuel
,
M. S.
Shephard
,
M.
Tomozawa
,
D.
Vashishth
, and
S.
Zhang
, “
Stochasticity in materials structure, properties, and processing-A review
,”
Appl. Phys. Rev.
5
,
011302
(
2018
).
41.
M.
Vrabelj
,
H.
Uršič
,
Z.
Kutnjak
,
B.
Rožič
,
S.
Drnovšek
,
A.
Benčan
,
V.
Bobnar
,
L.
Fulanović
, and
B.
Malič
, “
Large electrocaloric effect in grain-size-engineered 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3
,”
J. Eur. Ceram. Soc.
36
,
75
80
(
2016
).
42.
Y.
Bai
,
S.
Qin
,
W.
Nie
,
J.
Li
,
J.
Li
,
H.
Wang
,
L.
Qiao
, and
D.
Guo
, “
Influence of microstructure features on electrocaloric effect in ferroelectric ceramics
,”
Ceram. Int.
44
,
8263
8269
(
2018
).
You do not currently have access to this content.