Electrocaloric refrigeration shows potential as a viable alternative to vapor-compression and/or thermo-electric refrigeration. One of the main challenges that need to be addressed in electrocaloric technology is the fatigue behavior of electrocaloric materials, in terms of both structural and functional aspects. Here, a comprehensive evaluation of the fatigue behavior of the 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN-10PT) bulk relaxor ferroelectric (or shortly relaxor) ceramic at room temperature is performed. First, the temperature-change dependence on the slew rate was studied. It is shown that the adiabatic conditions are well approached at the slew rate above 1 kV s−1, at which the adiabatic temperature change of 1.3 K was measured at the electric field change of 90 kV cm−1. Then, the durability limits (i.e., the fatigue life) of ten PMN-10PT samples were investigated during unipolar electric field cycling. The results showed that the material could withstand up to 106 cycles at the electric field change of 90 kV cm−1 with only minor degradation of the functional properties (less than 5% of the maximum adiabatic temperature change). Hence, PMN-10PT can be considered as a promising material for use in an electrocaloric cooling device, but some critical issues that caused premature failure of several samples would need to be further addressed and improved.

1.
IEA
,
The Future of Cooling Opportunities for Energy- Efficient Air Conditioning
(IEA,
2018
). https://www.iea.org/reports/the-future-of-cooling.
2.
Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No. 842/2006, J. Eur
. Union (
2014
), pp.
195
230
. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014R0517.
3.
UN Environment Programme, Treaties
: The Montreal Protocol on Substances that Deplete the Ozone Layer; see https://ozone.unep.org/treaties/montreal-protocol/meetings/twenty-eighth-meeting-parties.
4.
P. A.
Domanski
,
R.
Brignoli
,
J. S.
Brown
,
A. F.
Kazakov
, and
M. O.
McLinden
,
Int. J. Refrig.
84
,
198
(
2017
).
5.
A.
Kasaeian
,
S. M.
Hosseini
,
M.
Sheikhpour
,
O.
Mahian
,
W. M.
Yan
, and
S.
Wongwises
,
Renew. Sustain. Energy Rev.
96
,
91
(
2018
).
6.
N.
Abas
,
A. R.
Kalair
,
N.
Khan
,
A.
Haider
,
Z.
Saleem
, and
M. S.
Saleem
,
Renew. Sustain. Energy Rev.
90
,
557
(
2018
).
7.
S.
Bobbo
,
G.
Di Nicola
,
C.
Zilio
,
J. S.
Brown
, and
L.
Fedele
,
Int. J. Refrig.
90
,
181
(
2018
).
8.
J. S.
Brown
and
P. A.
Domanski
,
Appl. Therm. Eng.
64
,
252
(
2014
).
9.
P.
Bansal
,
E.
Vineyard
, and
O.
Abdelaziz
,
Int. J. Sustain. Built Environ.
1
,
85
(
2012
).
10.
D. R.
Brown
,
T. B.
Stout
,
J. A.
Dirks
, and
N.
Fernandez
,
Energy Eng.: J. Assoc. Energy Engineers
109
(
6
),
7
20
(
2012
).
11.
W.
Goetzler
,
R.
Zogg
,
J.
Young
, and
C.
Johnson
, Navigant Consulting Inc., prepared for U.S. Department of Energy, 2014.
12.
A.
Kitanovski
,
J.
Tusek
,
U.
Tomc
,
U.
Plaznik
,
M.
Ozbolt
, and
A.
Poredos
, “
Magnetocaloric energy conversion: From theory to applications
,” in
Green Energy and Technology
(
Springer
,
2015
).
13.
S.
Qian
,
D.
Nasuta
,
A.
Rhoads
,
Y.
Wang
,
Y.
Geng
,
Y.
Hwang
,
R.
Radermacher
, and
I.
Takeuchi
,
Int. J. Refrig.
62
,
177
(
2016
).
14.
A.
Tura
and
A.
Rowe
,
Int. J. Refrig.
37
,
106
(
2014
).
15.
A.
Kitanovski
,
U.
Plaznik
,
U.
Tomc
, and
A.
Poredoš
,
Int. J. Refrig.
57
,
288
(
2015
).
16.
R.
Bjørk
,
C. R. H.
Bahl
, and
K. K.
Nielsen
,
Int. J. Refrig.
63
,
48
(
2016
).
17.
M.
Ožbolt
,
A.
Kitanovski
,
J.
Tušek
, and
A.
Poredoš
,
Int. J. Refrig.
40
,
174
(
2014
).
18.
Y. V.
Sinyavsky
and
V. M.
Brodyansky
,
Ferroelectrics
131
,
321
(
1992
).
19.
H.
Gu
,
X.
Qian
,
X.
Li
,
B.
Craven
,
W.
Zhu
,
A.
Cheng
,
S. C.
Yao
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
102
,
122904
(
2013
).
20.
H.
Gu
,
X.-S.
Qian
,
H.-J.
Ye
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
105
,
162905
(
2014
).
21.
M.
Ožbolt
,
A.
Kitanovski
,
J.
Tušek
, and
A.
Poredoš
,
Int. J. Refrig.
37
,
16
(
2014
).
22.
U.
Plaznik
,
A.
Kitanovski
,
B.
Rožič
,
B.
Malič
,
H.
Uršič
,
S.
Drnovšek
,
J.
Cilenšek
,
M.
Vrabelj
,
A.
Poredoš
, and
Z.
Kutnjak
,
Appl. Phys. Lett.
106
,
043903
(
2015
).
23.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
, and
C.
Masselli
,
Int. J. Refrig.
69
,
369
(
2016
).
24.
U.
Plaznik
,
M.
Vrabelj
,
Z.
Kutnjak
,
B.
Malič
,
B.
Rožič
,
A.
Poredoš
, and
A.
Kitanovski
,
Int. J. Refrig.
98
,
139
(
2019
).
25.
A.
Basiulis
,
R.
Beach
,
R. L.
Berry
, and
R.
Verdes
, US4757688 (Jul. 19, 1988).
26.
S. F.
Karmanenko
,
O. V.
Pakhomov
,
A. M.
Prudan
,
A. S.
Starkov
, and
A.
Eskov
,
J. Eur. Ceram. Soc.
27
,
3109
(
2007
).
27.
R. I.
Epstein
and
K. J.
Malloy
,
J. Appl. Phys.
106
,
064509
(
2009
).
28.
Y.
Jia
and
Y. S.
Ju
,
Appl. Phys. Lett.
100
,
242901
(
2012
).
29.
R.
Ma
,
Z.
Zhang
,
K.
Tong
,
D.
Huber
,
R.
Kornbluh
,
Y. S.
Ju
, and
Q.
Pei
,
Science
357
,
1130
(
2017
).
30.
E.
Defay
,
R.
Faye
,
G.
Despesse
,
H.
Strozyk
,
D.
Sette
,
S.
Crossley
,
X.
Moya
, and
N. D.
Mathur
,
Nat. Commun.
9
,
1827
(
2018
).
31.
P.
Kobeko
and
I.
Kurtchatov
,
Z. Phys.
66
,
192
(
1930
).
32.
G. G.
Wiseman
and
J. K.
Kuebler
,
Phys. Rev.
131
,
2023
(
1963
).
33.
G. G.
Wiseman
,
IEEE Trans. Electron Devices
16
,
588
(
1969
).
34.
D. Q.
Xiao
,
Y. C.
Wang
,
R. L.
Zhang
,
S. Q.
Peng
,
J. G.
Zhu
, and
B.
Yang
,
Mater. Chem. Phys.
57
,
182
(
1998
).
35.
A. S.
Mischenko
,
Q.
Zhang
,
J. F.
Scott
,
R. W.
Whatmore
, and
N. D.
Mathur
,
Science
311
(
5765
),
1270
1271
(
2006
).
36.
L. E.
Cross
,
Ferroelectrics
76
,
241
(
1987
).
37.
A. S.
Mischenko
,
Q.
Zhang
,
R. W.
Whatmore
,
J. F.
Scott
, and
N. D.
Mathur
,
Appl. Phys. Lett.
89
,
242912
(
2006
).
38.
B.
Neese
,
B.
Chu
,
S.
Lu
,
Y.
Wang
,
E.
Furman
, and
Q. M.
Zhang
,
Science
321
,
821
(
2008
).
39.
40.
J.
Shi
,
D.
Han
,
Z.
Li
,
L.
Yang
,
S.-G.
Lu
,
Z.
Zhong
,
J.
Chen
,
Q. M.
Zhang
, and
X.
Qian
,
Joule
3
,
1200
(
2019
).
41.
Commission Delegated Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances, J. Eur. Union (2015), pp. 10–12. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015L0863.
42.
R.
Kumar
and
S.
Singh
,
J. Alloys Compd.
723
,
589
(
2017
).
43.
M.
ben Abdessalem
,
I.
Kriaa
,
A.
Aydi
, and
N.
Abdelmoula
,
Ceram. Int.
44
,
13595
(
2018
).
44.
X. D.
Jian
,
B.
Lu
,
D. D.
Li
,
Y. B.
Yao
,
T.
Tao
,
B.
Liang
, and
S. G.
Lu
,
J. Alloys Compd.
742
,
165
(
2018
).
45.
J.
Koruza
,
B.
Rožič
,
G.
Cordoyiannis
,
B.
Malič
, and
Z.
Kutnjak
,
Appl. Phys. Lett.
106
,
202905
(
2015
).
46.
X. S.
Qian
,
H. J.
Ye
,
Y. T.
Zhang
,
H.
Gu
,
X.
Li
,
C. A.
Randall
, and
Q. M.
Zhang
,
Adv. Funct. Mater.
24
,
1300
(
2014
).
47.
S.
Lu
,
G.
Chen
,
Y.
Zhang
,
Z.
Zhao
,
F.
Li
,
Z.
Lv
,
Z.
Ma
,
D.
Wang
,
C.
Lu
, and
S.
Li
,
Ceram. Int.
44
(
17
),
21950
21955
(
2018
).
48.
S. G.
Lu
,
B.
Rožič
,
Q. M.
Zhang
,
Z.
Kutnjak
,
Xinyu
Li
,
E.
Furman
,
Lee J.
Gorny
,
Minren
Lin
,
B.
Malič
,
M.
Kosec
,
R.
Blinc
, and
R.
Pirc
,
Appl. Phys. Lett.
97
,
162904
(
2010
).
49.
B.
Lu
,
P.
Li
,
Z.
Tang
,
Y.
Yao
,
X.
Gao
,
W.
Kleemann
, and
S. G.
Lu
,
Sci. Rep.
7
,
45335
(
2017
).
50.
A. A.
Bokov
and
Z.
Ye
,
J. Mater. Sci.
41
(
1
),
31
52
(
2006
).
51.
Z.
Kutnjak
,
B.
Rozic
, and
R.
Pirc
,
Wiley Encyclopedia of Electrical and Electronics Engineering
(John Wiley & Sons, Inc.,
2015
), Vol. 1.
52.
Y.
Liu
,
J. F.
Scott
, and
B.
Dkhil
,
Appl. Phys. Rev.
3
,
031102
(
2016
).
53.
H.
Ossmer
,
F.
Lambrecht
,
M.
Gültig
,
C.
Chluba
,
E.
Quandt
, and
M.
Kohl
,
Acta Mater.
81
,
9
(
2014
).
54.
J.
Tušek
,
A.
Žerovnik
,
M.
Čebron
,
M.
Brojan
,
B.
Žužek
,
K.
Engelbrecht
, and
A.
Cadelli
,
Acta Mater.
150
,
295
(
2018
).
55.
D. V.
Christensen
,
R.
Bjørk
,
K. K.
Nielsen
,
C. R. H.
Bahl
,
A.
Smith
, and
S.
Clausen
,
J. Appl. Phys.
108
,
063913
(
2010
).
56.
D.
Guo
,
J.
Gao
,
Y.-J.
Yu
,
S.
Santhanam
,
G. K.
Fedder
,
A. J. H.
McGaughey
, and
S. C.
Yao
,
Appl. Phys. Lett.
105
,
031906
(
2014
).
57.
Y.
Liu
,
B.
Dkhil
, and
E.
Defay
,
ACS Energy Lett.
1
,
521
(
2016
).
58.
M. V.
Gorev
,
I. N.
Flerov
,
V. S.
Bondarev
, and
P.
Sciau
,
J. Exp. Theor. Phys.
96
,
531
(
2003
).
59.
B.
Rožič
,
B.
Malič
,
H.
Uršič
,
J.
Holc
,
M.
Kosec
, and
Z.
Kutnjak
,
Ferroelectrics
421
,
103
(
2011
).
60.
U.
Plaznik
,
M.
Vrabelj
,
Z.
Kutnjak
,
B.
Malič
,
A.
Poredoš
, and
A.
Kitanovski
,
Europhys. Lett.
111
,
57009
(
2015
).
61.
H.
Uršič
,
M.
Vrabelj
,
L.
Fulanović
,
A.
Bradeško
,
S.
Drnovšek
, and
B.
Malič
,
Informacije Midem
45
(
4
),
260
265
.
62.
L.
Fulanović
,
J.
Koruza
,
N.
Novak
,
F.
Weyland
,
B.
Malič
, and
V.
Bobnar
,
J. Eur. Ceram. Soc.
37
,
5105
(
2017
).
63.
H.
Uršic
,
L.
Fulanović
,
M.
Vrabelj
,
Z.
Kutnjak
,
B.
Rožič
,
S.
Drnovšek
, and
B.
Malič
,
Adv. Appl. Ceram.
115
,
77
(
2016
).
64.
Z.
Kutnjak
,
J.
Petzelt
, and
R.
Blinc
,
Nature
441
,
956
(
2006
).
65.
D.
Saranya
,
A. R. O. Y.
Chaudhuri
,
J.
Parui
, and
S. B.
Krupanidhi
,
Bull. Mater.
32
,
259
(
2009
).
66.
D.
Lin
,
Z.
Li
,
Z. Y.
Cheng
,
Z.
Xu
, and
X.
Yao
,
Solid State Commun.
151
,
1188
(
2011
).
67.
R.
Chukka
,
J. W.
Cheah
,
Z.
Chen
,
P.
Yang
,
S.
Shannigrahi
,
J.
Wang
, and
L.
Chen
,
Appl. Phys. Lett.
98
,
242902
(
2011
).
68.
M. A.
Hamad
,
J. Comput. Electron.
11
,
344
(
2012
).
69.
T. F.
Zhang
,
X. G.
Tang
,
Q. X.
Liu
,
Y. P.
Jiang
,
X. X.
Huang
, and
Q. F.
Zhou
,
J. Phys. D Appl. Phys.
49
,
095302
(
2016
).
70.
S. G.
Lu
,
Z. H.
Cai
,
Y. X.
Ouyang
,
Y. M.
Deng
,
S. J.
Zhang
, and
Q. M.
Zhang
,
Ceram. Int.
41
,
S15
(
2015
).
71.
Y. A.
Genenko
,
J.
Glaum
,
M. J.
Hoffmann
, and
K.
Albe
,
Mater. Sci. Eng. B Solid State Mater. Adv. Technol.
192
,
52
(
2015
).
72.
H.
Cao
and
A. G.
Evans
,
J. Am. Ceram. Soc.
77
(
7
),
1783
1786
(
1994
).
73.
C. S.
Lynch
,
L.
Chen
,
Z.
Suo
,
R. M.
Mcmeeking
, and
W.
Yang
,
J. Intell. Mater. Syst. Struct.
6
,
191
(
1995
).
74.
D.
Fang
,
B.
Liu
, and
C. T.
Sun
,
J. Am. Ceram. Soc.
87
(
5
),
840
846
(
2004
).
75.
H. G.
Beom
and
K. M.
Jeong
,
Acta Mech.
177
,
43
(
2005
).
76.
J.
Glaum
,
T.
Granzow
,
L. A.
Schmitt
,
H. J.
Kleebe
, and
J.
Rödel
,
Acta Mater.
59
,
6083
(
2011
).
77.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
,
1083
(
2005
).
78.
Z.
Suo
,
J. Mech. Phys. Solids
41
,
1155
(
1993
).
79.
J.
Zhao
,
A. E.
Glazounov
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
74
,
436
(
1999
).
80.
Y.
Bai
,
X.
Han
,
X.
Zheng
, and
L.
Qiao
,
Sci. Rep.
3
,
2895
(
2013
).
81.
F.
Weyland
,
T.
Eisele
,
S.
Steiner
,
T.
Frömling
,
G. A.
Rossetti
 Jr.
,
J.
Rödel
, and
N.
Novak
,
J. Eur. Ceram. Soc.
38
(
2
),
551
556
(
2018
).
82.
A.
Bradeško
,
L.
Fulanović
,
M.
Vrabelj
,
M.
Otoničar
,
H.
Uršič
,
A.
Henriques
,
C.–C.
Chung
,
J. L.
Jones
,
B.
Malič
,
Z.
Kutnjak
, and
T.
Rojac
,
Acta Mater.
169
,
275
283
(
2019
).
83.
M.
Vrabelj
,
H.
Uršič
,
Z.
Kutnjak
,
B.
Rožič
,
S.
Drnovšek
,
A.
Benčan
,
V.
Bobnar
,
L.
Fulanović
, and
B.
Malič
,
J. Eur. Ceram. Soc.
36
,
75
(
2016
).
84.
J. R.
Taylor
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
(University Science Books,
1982
).
85.
A.
Muliana
,
Int. J. Solids Struct.
48
,
2718
(
2011
).
86.
C.
Molin
,
F.
Le Goupil
,
J.
Peräntie
,
S.
Gebhardt
,
D. C.
Lupascu
,
N.
Novak
,
F.
Weyland
,
M.
Sanlialp
, and
N.
Stingelin
,
J. Am. Ceram. Soc.
100
,
2885
(
2017
).
87.
B.
Rožič
,
B.
Malič
,
H.
Uršič
,
J.
Holc
,
M.
Kosec
,
B.
Neese
,
Q. M.
Zhang
, and
Z.
Kutnjak
,
Ferroelectrics
405
,
26
(
2010
).
88.
C.
Verdier
,
D. C.
Lupascu
, and
J.
Rödel
,
J. Eur. Ceram. Soc.
23
,
1409
(
2003
).
89.
Z.
Luo
,
T.
Granzow
,
J.
Glaum
,
W.
Jo
,
J.
Rödel
, and
M.
Hoffman
,
J. Am. Ceram. Soc.
94
,
3927
(
2011
).

Supplementary Material

You do not currently have access to this content.