In this paper, we study the elastic properties of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O using experimental and first principles techniques. Our measurements of the indentation modulus on grains with a wide range of crystallographic orientations of the entropy-stabilized oxide revealed a high degree of elastic isotropy at ambient conditions. First principles calculations predict mild elastic anisotropy for the paramagnetic structure, which decreases when the system is considered to be non-magnetic. When the antiferromagnetic state of CoO, CuO, and NiO is accounted for in the calculations, a slight increase in elastic anisotropy is observed, suggesting a coupling between magnetic ordering and the orientation dependent elastic properties. Furthermore, an examination of the local structure reveals that the isotropy is favored through local ionic distortions of Cu and Zn—due to their tendencies to form tenorite and wurtzite phases. The relationships between the elastic properties of the multicomponent oxide and those of its constituent binary oxides are reviewed. These insights open up new avenues for controlling isotropy for technological applications through tuning composition and structure in the entropy-stabilized oxide or the high-entropy compounds in general.

1.
H.
Olijnyk
and
A. P.
Jephcoat
,
Solid State Commun.
115
,
335
(
2000
).
2.
A.
Schmitz
,
M.
Chandrasekaran
,
G.
Ghosh
, and
L.
Delaey
,
Acta Metall.
37
,
3151
(
1989
).
3.
X.
Han
,
N. M.
Ghoniem
, and
Z.
Wang
,
Philos. Mag.
83
,
3705
(
2003
).
4.
V.
Tvergaard
and
J. W.
Hutchinson
,
J. Am. Ceram. Soc.
71
,
157
(
1988
).
5.
J.
Brugués
,
J.
Ignés-Mullol
,
J.
Casademunt
, and
F.
Sagués
,
Phys. Rev. Lett.
100
,
037801
(
2008
).
6.
C. M.
Rost
,
E.
Sachet
,
T.
Borman
,
A.
Moballegh
,
E. C.
Dickey
,
D.
Hou
,
J. L.
Jones
,
S.
Curtarolo
, and
J.-P.
Maria
,
Nat. Commun.
6
,
8485
(
2015
).
7.
Y.
Sharma
,
B. L.
Musico
,
X.
Gao
,
C.
Hua
,
A. F.
May
,
A.
Herklotz
,
A.
Rastogi
,
D.
Mandrus
,
J.
Yan
,
H. N.
Lee
,
M. F.
Chisholm
,
V.
Keppens
, and
T. Z.
Ward
,
Phys. Rev. Mater.
2
,
060404
(
2018
).
8.
A.
Sarkar
,
R.
Djenadic
,
D.
Wang
,
C.
Hein
,
R.
Kautenburger
,
O.
Clemens
, and
H.
Hahn
,
J. Eur. Ceram. Soc.
38
,
2318
(
2018
).
9.
S.
Jiang
,
T.
Hu
,
J.
Gild
,
N.
Zhou
,
J.
Nie
,
M.
Qin
,
T.
Harrington
,
K.
Vecchio
, and
J.
Luo
,
Scr. Mater.
142
,
116
(
2018
).
10.
K.
Chen
,
X.
Pei
,
L.
Tang
,
H.
Cheng
,
Z.
Li
,
C.
Li
,
X.
Zhang
, and
L.
An
,
J. Eur. Ceram. Soc.
38
,
4161
(
2018
).
11.
J.
Gild
,
M.
Samiee
,
J. L.
Braun
,
T.
Harrington
,
H.
Vega
,
P. E.
Hopkins
,
K.
Vecchio
, and
J.
Luo
,
J. Eur. Ceram. Soc.
38
,
3578
(
2018
).
12.
J.
Dąbrowa
,
M.
Stygar
,
A.
Mikuła
,
A.
Knapik
,
K.
Mroczka
,
W.
Tejchman
,
M.
Danielewski
, and
M.
Martin
,
Mater. Lett.
216
,
32
(
2018
).
13.
J.
Gild
,
Y.
Zhang
,
T.
Harrington
,
S.
Jiang
,
T.
Hu
,
M. C.
Quinn
,
W. M.
Mellor
,
N.
Zhou
,
K.
Vecchio
, and
J.
Luo
,
Sci. Rep.
6,
37946
(
2016
).
14.
E.
Castle
,
T.
Csanádi
,
S.
Grasso
,
J.
Dusza
, and
M.
Reece
,
Sci. Rep.
8
,
8609
(
2018
).
15.
J.
Dusza
,
P.
Švec
,
V.
Girman
,
R.
Sedlák
,
E. G.
Castle
,
T.
Csanádi
,
A.
Kovalčíková
, and
M. J.
Reece
,
J. Eur. Ceram. Soc.
38
,
4303
(
2018
).
16.
X.
Yan
,
L.
Constantin
,
Y.
Lu
,
J.-F.
Silvain
,
M.
Nastasi
, and
B.
Cui
,
J. Am. Ceram. Soc.
101
,
4486
(
2018
).
17.
J.
Zhou
,
J.
Zhang
,
F.
Zhang
,
B.
Niu
,
L.
Lei
, and
W.
Wang
,
Ceram. Int.
44
,
22014
(
2018
).
18.
P.
Sarker
,
T.
Harrington
,
C.
Toher
,
C.
Oses
,
M.
Samiee
,
J.-P.
Maria
,
D. W.
Brenner
,
K. S.
Vecchio
, and
S.
Curtarolo
,
Nat. Commun.
9
,
4980
(
2018
).
19.
J.
Zhang
,
J.
Yan
,
S.
Calder
,
Q.
Zheng
,
M. A.
McGuire
,
D. L.
Abernathy
,
Y.
Ren
,
S. H.
Lapidus
,
K.
Page
,
H.
Zheng
,
J. W.
Freeland
,
J. D.
Budai
, and
R. P.
Hermann
,
Chem. Mater.
31
,
3705
(
2019
).
20.
A.
Sarkar
,
L.
Velasco
,
D.
Wang
,
Q.
Wang
,
G.
Talasila
,
L.
de Biasi
,
C.
Kübel
,
T.
Brezesinski
,
S. S.
Bhattacharya
,
H.
Hahn
, and
B.
Breitung
,
Nat. Commun.
9
,
3400
(
2018
).
21.
P. B.
Meisenheimer
,
T. J.
Kratofil
, and
J. T.
Heron
,
Sci. Rep.
7
,
13344
(
2017
).
22.
C.
Zener
,
Elasticity and Anelasticity of Metals
(
University of Chicago Press
,
1948
).
23.
T. S.
Duffy
,
Am. Mineral.
103
,
977
(
2018
).
24.
D.
Legut
,
M.
Friák
, and
M.
Šob
,
Phys. Rev. Lett.
99
,
016402
(
2007
).
25.
S. I.
Ranganathan
and
M.
Ostoja-Starzewski
,
Phys. Rev. Lett.
101
,
055504
(
2008
).
26.
M. A.
Gülgün
,
W. M.
Kriven
, and
M. H.
Nguyen
, U.S. Patent 6,482,387 (19 November
2002
).
27.
J. J.
Vlassak
and
W. D.
Nix
,
J. Mech. Phys. Solids
42
,
1223
(
1994
).
28.
Z.
Hashin
,
J. Appl. Mech.
50
,
481
(
1983
).
29.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
30.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
31.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
32.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
33.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
34.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
35.
A.
Zunger
,
S.-H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
36.
A.
van de Walle
,
P.
Tiwary
,
M.
de Jong
,
D. L.
Olmsted
,
M.
Asta
,
A.
Dick
,
D.
Shin
,
Y.
Wang
,
L.-Q.
Chen
, and
Z.-K.
Liu
,
Calphad
42
,
13
(
2013
).
37.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
,
APL Mater.
1
,
011002
(
2013
).
38.
M.
de Jong
,
W.
Chen
,
T.
Angsten
,
A.
Jain
,
R.
Notestine
,
A.
Gamst
,
M.
Sluiter
,
C.
Krishna Ande
,
S.
van der Zwaag
,
J. J.
Plata
,
C.
Toher
,
S.
Curtarolo
,
G.
Ceder
,
K. A.
Persson
, and
M.
Asta
,
Sci. Data
2
,
150009
(
2015
).
39.
C.
Kittel
,
Introduction to Solid State Physics
(
John Wiley & Sons Inc.
,
2004
).
40.
B. X.
Yang
,
J. M.
Tranquada
, and
G.
Shirane
,
Phys. Rev. B
38
,
174
(
1988
).
41.
M.
Radovic
,
E.
Lara-Curzio
, and
L.
Riester
,
Mater. Sci. Eng. A
368
,
56
(
2004
).
42.
P.
Gopal
and
N. A.
Spaldin
,
J. Electron. Mater.
35
,
538
(
2006
).
43.
A. J.
Cinthia
,
R.
Rajeswarapalanichamy
, and
K.
Iyakutti
,
Z. Naturforsch. A
70
,
797
(
2015
).
44.
D.
Isaak
,
O.
Anderson
, and
T.
Goto
,
Phys. Chem. Miner.
16
,
704
(
1989
).
45.
Y.
Sumino
,
M.
Kumazawa
,
O.
Nishizawa
, and
W.
Pluschkell
,
J. Phys. Earth
28
,
475
(
1980
).
46.
P.
de V Du Plessis
,
S. J.
van Tonder
, and
L.
Alberts
,
J. Phys. C Solid State Phys.
4
,
1983
(
1971
).
47.
N.
Uchida
and
S.
Saito
,
J. Acoust. Soc. Am.
51
,
1602
(
1972
).
48.
M. D.
Towler
,
N. L.
Allan
,
N. M.
Harrison
,
V. R.
Saunders
,
W. C.
Mackrodt
, and
E.
Aprà
,
Phys. Rev. B
50
,
5041
(
1994
).
49.
W.
Jifang
,
E. S.
Fisher
, and
M. H.
Manghnzmi
,
Chinese Phys. Lett.
8
,
153
(
1991
).
50.
K. H.
Max Born
,
Dynamical Theory of Crystal Lattices
(
OUP
,
1998
).
51.
S.
Huang
,
F.
Tian
, and
L.
Vitos
,
J. Mater. Res.
33
,
2938
(
2018
).
52.
M. C.
Gao
,
J.-W.
Yeh
,
P. K.
Liaw
, and
Y.
Zhang
,
High-Entropy Alloys
(
Springer International Publishing
,
2016
).
53.
P. K.
Lam
,
M. L.
Cohen
, and
G.
Martinez
,
Phys. Rev. B
35
,
9190
(
1987
).
54.
M. L.
Cohen
,
Phys. Rev. B
32
,
7988
(
1985
).

Supplementary Material

You do not currently have access to this content.