A two-step hot embossing process was used to transfer graphene and to fabricate Gr/Si Schottky photodiodes. As a direct graphene transfer technique through a hot embossing system, chemical vapor deposition Gr monolayer was transferred from copper foil to cyclic olefin copolymer foil without a poly(methylmethacrylate) sacrificial layer. Then, hot embossing was employed once again to bond graphene with the prepared Si substrate to form Schottky contact. Electrical and photoelectrical characterizations have been performed to evaluate the Schottky photodiode. The photocurrent increases linearly with light intensity under 633 nm illumination. With an appropriate bias voltage, the maximum responsivity reaches 0.73 A/W. Extracted from I–V characteristics by Cheung's function, the Schottky barrier height and ideality factor are 1.01 eV and 2.66, respectively. The experimental result shows the feasibility and effectiveness of this hot embossing fabrication process, which demonstrates the opportunity for large scale production and provides a new approach for graphene optoelectronics.

1.
X.
Li
,
M.
Zhu
,
M.
Du
,
Z.
Lv
,
L.
Zhang
,
Y.
Li
,
Y.
Yang
,
T.
Yang
,
X.
Li
, and
K.
Wang
,
Small
12
,
595
601
(
2016
).
2.
X.
Wang
,
Z.
Cheng
,
K.
Xu
,
H. K.
Tsang
, and
J.-B.
Xu
,
Nat. Photonics
7
,
888
(
2013
).
3.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
200
(
2005
).
4.
D.
Geng
,
H.
Wang
, and
G.
Yu
,
Adv. Mater.
27
,
2821
2837
(
2015
).
5.
D. Q.
McNerny
,
B.
Viswanath
,
D.
Copic
,
F. R.
Laye
,
C.
Prohoda
,
A. C.
Brieland-Shoultz
,
E. S.
Polsen
,
N. T.
Dee
,
V. S.
Veerasamy
, and
A. J.
Hart
,
Sci. Rep.
4
,
5049
(
2015
).
6.
A.
Mohsin
,
L.
Liu
,
P.
Liu
,
W.
Deng
,
I. N.
Ivanov
,
G.
Li
,
O. E.
Dyck
,
G.
Duscher
,
J. R.
Dunlap
, and
K.
Xiao
,
ACS Nano
7
,
8924
8931
(
2013
).
7.
F.
Han
,
S.
Yang
,
W.
Jing
,
K.
Jiang
,
Z.
Jiang
,
H.
Liu
, and
L.
Li
,
Appl. Surf. Sci.
314
,
71
77
(
2014
).
8.
G.
Deokar
,
J.
Avila
,
I.
Razado-Colambo
,
J.-L.
Codron
,
C.
Boyaval
,
E.
Galopin
,
M.-C.
Asensio
, and
D.
Vignaud
,
Carbon
89
,
82
92
(
2015
).
9.
X.-D.
Chen
,
Z.-B.
Liu
,
C.-Y.
Zheng
,
F.
Xing
,
X.-Q.
Yan
,
Y.
Chen
, and
J.-G.
Tian
,
Carbon
56
,
271
278
(
2013
).
10.
L.
Gao
,
G.-X.
Ni
,
Y.
Liu
,
B.
Liu
,
A. H. C.
Neto
, and
K. P.
Loh
,
Nature
505
,
190
194
(
2014
).
11.
G.
Zhang
,
A. G.
Güell
,
P. M.
Kirkman
,
R. A.
Lazenby
,
T. S.
Miller
, and
P. R.
Unwin
,
ACS Appl. Mater. Interfaces
8
,
8008
8016
(
2016
).
12.
Y.
Fan
,
K.
He
,
H.
Tan
,
S.
Speller
, and
J. H.
Warner
,
Chem. Mater.
26
,
4984
4991
(
2014
).
13.
X.
Li
,
H.
Zhu
,
K.
Wang
,
A.
Cao
,
J.
Wei
,
C.
Li
,
Y.
Jia
,
Z.
Li
,
X.
Li
, and
D.
Wu
,
Adv. Mater.
22
,
2743
2748
(
2010
).
14.
D.
Xiang
,
C.
Han
,
Z.
Hu
,
B.
Lei
,
Y.
Liu
,
L.
Wang
,
W. P.
Hu
, and
W.
Chen
,
Small
11
,
4829
4836
(
2015
).
15.
L.
Yang
,
X.
Yu
,
M.
Xu
,
H.
Chen
, and
D.
Yang
,
J. Mater. Chem. A
2
,
16877
16883
(
2014
).
16.
T.
Feng
,
D.
Xie
,
Y.
Lin
,
H.
Zhao
,
Y.
Chen
,
H.
Tian
,
T.
Ren
,
X.
Li
,
Z.
Li
, and
K.
Wang
,
Nanoscale
4
,
2130
2133
(
2012
).
17.
X.
Miao
,
S.
Tongay
,
M. K.
Petterson
,
K.
Berke
,
A. G.
Rinzler
,
B. R.
Appleton
, and
A. F.
Hebard
,
Nano Lett.
12
,
2745
2750
(
2012
).
18.
M.
Jang
,
T. Q.
Trung
,
J.-H.
Jung
,
B.-Y.
Kim
, and
N.-E.
Lee
,
Phys. Chem. Chem. Phys.
16
,
4098
4105
(
2014
).
19.
A.
Suhail
,
K.
Islam
,
B.
Li
,
D.
Jenkins
, and
G.
Pan
,
Appl. Phys. Lett.
110
,
183103
(
2017
).
20.
K. S.
Min
,
K. S.
Kim
,
K. N.
Kim
,
A.
Mishra
, and
G. Y.
Yeom
,
J. Nanosci. Nanotechnol.
14
,
9108
9113
(
2014
).
21.
S.
Kim
,
S.
Shin
,
T.
Kim
,
H.
Du
,
M.
Song
,
C.
Lee
,
K.
Kim
,
S.
Cho
,
D. H.
Seo
, and
S.
Seo
,
Carbon
98
,
352
357
(
2016
).
22.
A.
Ballesio
,
M.
Parmeggiani
,
A.
Verna
,
F.
Frascella
,
M.
Cocuzza
,
C. F.
Pirri
, and
S. L.
Marasso
,
Microelectron. Eng.
209
,
16
19
(
2019
).
23.
W.-H.
Lin
,
T.-H.
Chen
,
J.-K.
Chang
,
J.-I.
Taur
,
Y.-Y.
Lo
,
W.-L.
Lee
,
C.-S.
Chang
,
W.-B.
Su
, and
C.-I.
Wu
,
ACS Nano
8
,
1784
1791
(
2014
).
24.
S.
Cha
,
M.
Cha
,
S.
Lee
,
J. H.
Kang
, and
C.
Kim
,
Sci. Rep.
5
,
17877
(
2015
).
25.
R.
Liu
,
X.-W.
Fu
,
J.
Meng
,
Y.-Q.
Bie
,
D.-P.
Yu
, and
Z.-M.
Liao
,
Nanoscale
5
,
5294
5298
(
2013
).
26.
Z.
Ni
,
Y.
Wang
,
T.
Yu
, and
Z.
Shen
,
Nano Res.
1
,
273
291
(
2008
).
27.
D. P.
Yu
,
Adv. Mater.
23
,
3938
3943
(
2011
).
28.
S. K.
Cheung
and
N. W.
Cheung
,
Appl. Phys. Lett.
49
,
85
87
(
1986
).
29.
L. D.
Rao
,
K. S.
Latha
,
V. R.
Reddy
, and
C.
Choi
,
Vacuum
119
,
276
283
(
2015
).
30.
S.
Riazimehr
,
D.
Schneider
,
C.
Yim
,
S.
Kataria
,
V.
Passi
,
A.
Bablich
,
G. S.
Duesberg
, and
M. C.
Lemme
,
Spectral Sensitivity of a Graphene/Silicon pn-Junction Photodetector
(
IEEE
,
2015
), pp.
77
80
.
31.
X.
An
,
F.
Liu
,
Y. J.
Jung
, and
S.
Kar
,
Nano Lett.
13
,
909
916
(
2013
).
32.
H.
Aydın
,
S. B.
Kalkan
,
C.
Varlikli
, and
C.
Çelebi
,
Nanotechnology
29
,
145502
(
2018
).
33.
A.
Di Bartolomeo
,
G.
Luongo
,
L.
Iemmo
,
F.
Urban
, and
F.
Giubileo
,
IEEE Trans. Nanotechnol.
17
,
1133
1137
(
2018
).
34.
S.
Cakmakyapan
and
M.
Jarrahi
,
High Responsivity and Bias-Free Graphene Photodetector with Nano-Grating Contact Electrodes
(
OSA
,
2018
), pp.
1
2
.
35.
L.-H.
Zeng
,
M.-Z.
Wang
,
H.
Hu
,
B.
Nie
,
Y.-Q.
Yu
,
C.-Y.
Wu
,
L.
Wang
,
J.-G.
Hu
,
C.
Xie
,
F.-X.
Liang
, and
L.-B.
Luo
,
ACS Appl. Mater. Interfaces
5
,
9362
9366
(
2013
).
36.
X.
Liu
,
X. W.
Zhang
,
Z. G.
Yin
,
J. H.
Meng
,
H. L.
Gao
,
L. Q.
Zhang
,
Y. J.
Zhao
, and
H. L.
Wang
,
Appl. Phys. Lett.
105
,
183901
(
2014
).
37.
S.
Shafique
,
S.
Yang
,
Y. T.
Woldu
, and
W.
Yiming
,
Sens. Actuators A
288
,
107
116
(
2019
).
38.
S.
Shafique
,
S.
Yang
,
Y.
Wang
,
Y. T.
Woldu
,
B.
Cheng
, and
P.
Ji
,
Sens. Actuators A
296
,
38
44
(
2019
).
You do not currently have access to this content.