In this paper, we focus on understanding the magnetic field and temperature dependences of the heat capacity CP, electrical resistivity ρ, and magnetocaloric effect ΔTad in Fe48Rh52 alloy near room temperatures. The phase diagram is constructed according to the CP(H, T) and ρ(H, T) data, and the field shift of the critical temperature is found to be 9.6 K/T. The experimental results on the heat capacity do not confirm the existing assumption about the electronic nature of the antiferromagnet–ferromagnet phase transition in the FeRh alloy. An increase in resistance through the ferromagnetic–antiferromagnetic phase transition is explained by a sharp decrease of the carrier density and simultaneously the appearance of an additional conducting channel. The adiabatic temperature change ΔTad at a field change of 1.8 T equals −9.8 K, and the maximum value of the entropy change ΔS estimated from CP(H, T) and ΔTad(H, T) data is equal to 12.8 J/kg K. The differences in the magnetocaloric effect values in the heating and cooling run in weak magnetic fields are explained based on the thermal expansion data. An almost reversible degradation of the magnetocaloric effect was discovered upon the continuous application of a cyclic magnetic field at temperatures near the magnetostructural transition.

1.
A. I.
Zakharov
,
A. M.
Kadomtseva
,
R. Z.
Levitin
, and
E. G.
Ponyatovskii
, “
Magnetic and magnetoelastic properties of a metamagnetic iron-rhodium alloy
,”
Sov. Phys. JETP
19
,
1348
1353
(
1964
).
2.
G.
Shirane
,
C. W.
Chen
,
P. A.
Flinn
, and
R.
Nathans
, “
Mössbauer study of hyperfine fields and isomer shifts in the Fe-Rh alloys
,”
Phys. Rev.
131
,
183
(
1963
).
3.
C.
Kittel
, “
Model of exchange-inversion magnetization
,”
Phys. Rev.
120
,
335
(
1960
).
4.
P.
Tu
,
A. J.
Heeger
,
J. S.
Kouvel
, and
J. B.
Comly
, “
Mechanism for the first-order magnetic transition in the FeRh system
,”
J. Appl. Phys.
40
,
1368
(
1969
).
5.
J.
Ivarsson
,
G. R.
Pickett
, and
J.
Toth
, “
The electronic heat capacity of nearly stoichiometric ordered FeRh alloys
,”
Phys. Lett.
35
,
167
(
1971
).
6.
N. V.
Baranov
and
E. A.
Barabanova
, “
Electrical resistivity and magnetic phase transitions in modified FeRh compounds
,”
J. Alloys Compd.
219
,
139
(
1995
).
7.
B. K.
Ponomarev
, “
Investigation of the antiferro-ferromagnetism transition in an FeRh alloy in a pulsed magnetic field up to 300 kOe
,”
Sov. Phys. JETP
36
,
105
107
(
1973
).
8.
L. Y.
Chen
and
D. W.
Lynch
, “
Ellipsometric studies of magnetic phase transitions of Fe-Rh alloys
,”
Phys. Rev. B
37
,
10503
(
1988
).
9.
R. Y.
Gu
and
V. P.
Antropov
, “
Dominance of the spin-wave contribution to the magnetic phase transition in FeRh
,”
Phys. Rev. B
72
,
012403
(
2005
).
10.
D. W.
Cooke
,
F.
Hellman
,
C.
Baldasseroni
,
C.
Bordel
,
S.
Moyerman
, and
E. E.
Fullerton
, “
Thermodynamic measurements of Fe-Rh alloys
,”
Phys. Rev. Lett.
109
,
255901
(
2012
).
11.
M. A.
de Vries
,
M.
Loving
,
A. P.
Mihai
,
L. H.
Lewis
,
D.
Heiman
, and
C. H.
Marrows
, “
Hall-effect characterization of the metamagnetic transition in FeRh
,”
New J. Phys.
15
,
013008
(
2013
).
12.
T.
Zhou
,
M. K.
Cher
,
L.
Shen
,
J. F.
Hu
, and
Z. M.
Yuan
, “
On the origin of giant magnetocaloric effect and thermal hysteresis in multifunctional α-FeRh thin films
,”
Phys. Lett. A
377
,
3052
3059
(
2013
).
13.
V.
Uhlir
,
J. A.
Arregi
, and
E. E.
Fullerton
, “
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
,”
Nat. Commun.
7
,
13113
(
2016
).
14.
C.
Bull
,
C. W.
Barton
,
W.
Griggs
,
A.
Caruana
,
C. J.
Kinane
,
P. W.
Nutter
, and
T.
Thomson
, “
PNR study of the phase transition in FeRh thin films
,”
APL Mater.
7
,
101117
(
2019
).
15.
L. H.
Lewis
,
C. H.
Marrows
, and
S.
Langridge
, “
Coupled magnetic, structural, and electronic phase transitions in FeRh
,”
J. Phys. D Appl. Phys.
49
,
323002
(
2016
).
16.
S. A.
Nikitin
,
G.
Myalikgulyev
,
A. M.
Tishin
,
M. P.
Annaorazov
,
K. A.
Asatryan
, and
A. L.
Tyurin
, “
The magnetocaloric effect in Fe49Rh51 compound
,”
Phys. Lett. A
148
,
363
366
(
1990
).
17.
M. P.
Annaorazov
,
S. A.
Nikitin
,
A. L.
Tyurin
,
K. A.
Asatryan
, and
A. K.
Dovletov
, “
Anomalously high entropy change in FeRh alloy
,”
J. Appl. Phys.
79
,
1689
(
1996
).
18.
M.
Manekar
and
S. B.
Roy
, “
Reproducible room temperature giant magnetocaloric effect in Fe–Rh
,”
J. Phys. D Appl. Phys.
41
,
192004
(
2008
).
19.
K.
Nishimura
,
Y.
Nakazawa
,
L.
Li
, and
K.
Mori
, “
Magnetocaloric effect of Fe(Rh1АxPdx) alloys
,”
Mater. Trans.
49
,
1753
1756
(
2008
).
20.
C. F.
Sanchez-Valdes
,
R. R.
Gimaev
,
M.
Lopez-Cruz
,
J. L.
Sanchez Llamazares
,
V. I.
Zverev
,
A. M.
Tishin
,
A. M. G.
Carvalho
,
D. J. M.
Aguiar
,
Y.
Mudryk
, and
V. K.
Pecharsky
, “
The effect of cooling rate on magnetothermal properties of Fe49Rh51
,”
J. Magn. Magn. Mater.
498
,
166130
(
2020
).
21.
V. I.
Zverev
,
A. M.
Saletsky
,
R. R.
Gimaev
,
A. M.
Tishin
,
T.
Miyanaga
, and
J. B.
Staunton
, “
Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6
,”
Appl. Phys. Lett.
108
,
192405
(
2016
).
22.
A. P.
Kamantsev
,
A. A.
Amirov
,
Y. S.
Koshkid’ko
,
C.
Salazar Mejia
,
A. V.
Mashirov
,
A. M.
Aliev
,
V. V.
Koledov
, and
V. G.
Shavrov
,
Phys. Solid State
62
,
160
163
(
2020
).
23.
A. M.
Aliev
,
A. B.
Batdalov
,
L. N.
Khanov
,
A. P.
Kamantsev
,
V. V.
Koledov
,
A. V.
Mashirov
,
V. G.
Shavrov
,
R. M.
Grechishkin
,
A. R.
Kaul
, and
V.
Sampath
,
Appl. Phys. Lett.
109
,
202407
(
2016
).
24.
A.
Chirkova
,
K. P.
Skokov
,
L.
Schultz
,
N. V.
Baranov
,
O.
Gutfleisch
, and
T. G.
Woodcock
, “
Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions
,”
Acta Mater.
106
,
15
21
(
2016
).
25.
M. R.
Ibarra
and
P. A.
Algarabel
, “
Giant volume magnetostriction in the FeRh alloy
,”
Phys. Rev. B
50
,
4196
(
1994
).
26.
P. A.
Algarabel
,
M. R.
Ibarra
,
C.
Marquina
, and
A.
del Moral
, “
Giant room-temperature magnetoresistance in the FeRh alloy
,”
Appl. Phys. Lett.
66
,
3061
(
1995
).
27.
J. U.
Thiele
,
S.
Maat
, and
E. E.
Fullerton
, “
FeRh/FePt exchange spring films for thermally assisted magnetic recording media
,”
Appl. Phys. Lett.
82
,
2859
2861
(
2003
).
28.
Y.
Jiao
,
Z.
Liu
, and
R. H.
Victora
, “
Renormalized anisotropic exchange for representing heat assisted magnetic recording media
,”
J. Appl. Phys.
117
,
17E317
(
2015
).
29.
X. Z.
Chen
,
J. F.
Feng
,
Z. C.
Wang
,
J.
Zhang
,
X. Y.
Zhong
,
C.
Song
,
L.
Jin
,
B.
Zhang
,
F.
Li
,
M.
Jiang
,
Y. Z.
Tan
,
X. J.
Zhou
,
G. Y.
Shi
,
X. F.
Zhou
,
X. D.
Han
,
S. C.
Mao
,
Y. H.
Chen
,
X. F.
Han
, and
F.
Pan
, “
Tunneling anisotropic magnetoresistance driven by magnetic phase transition
,”
Nat. Commun.
8
,
449
(
2017
).
30.
X.
Marti
,
I.
Fina
,
C.
Frontera
,
J.
Liu
,
P.
Wadley
,
Q.
He
,
R. J.
Paull
,
J. D.
Clarkson
,
J.
Kudrnovsky
,
I.
Turek
,
J.
Kunes
,
D.
Yi
,
J.-H.
Chu
,
C. T.
Nelson
,
L.
You
,
E.
Arenholz
,
S.
Salahuddin
,
J.
Fontcuberta
,
T.
Jungwirth
, and
R.
Ramesh
, “
Room-temperature antiferromagnetic memory resistor
,”
Nat. Mater.
13
,
367
374
(
2014
).
31.
R. O.
Cherifi
,
V.
Ivanovskaya
,
L. C.
Phillips
,
A.
Zobelli
,
I. C.
Infante
,
E.
Jacquet
,
V.
Garcia
,
S.
Fusil
,
P. R.
Briddon
,
N.
Guiblin
,
A.
Mougin
,
A. A.
Unal
,
F.
Kronast
,
S.
Valencia
,
B.
Dkhil
,
A.
Barthelemy
, and
M.
Bibes
, “
Electric-field control of magnetic order above room temperature
,”
Nat. Mater.
13
,
345
351
(
2014
).
32.
Y.
Lee
,
Z. Q.
Liu
,
J. T.
Heron
,
J. D.
Clarkson
,
J.
Hong
,
C.
Ko
,
M. D.
Biegalski
,
U.
Aschauer
,
S. L.
Hsu
,
M. E.
Nowakowski
,
J.
Wu
,
H. M.
Christen
,
S.
Salahuddin
,
J. B.
Bokor
,
N. A.
Spaldin
,
D. G.
Schlom
, and
R.
Ramesh
, “
Large resistivity modulation in mixed-phase metallic systems
,”
Nat. Commun.
6
,
5959
(
2015
).
33.
Z. Q.
Liu
,
L.
Li
,
Z.
Gai
,
J. D.
Clarkson
,
S. L.
Hsu
,
A. T.
Wong
,
L. S.
Fan
,
M.-W.
Lin
,
C. M.
Rouleau
,
T. Z.
Ward
,
H. N.
Lee
,
A. S.
Sefat
,
H. M.
Christen
, and
R.
Ramesh
, “
Full electroresistance modulation in a mixed-phase metallic alloy
,”
Phys. Rev. Lett.
116
,
097203
(
2016
).
34.
A. A.
Amirov
,
I. A.
Baraban
,
A. A.
Grachev
,
A. P.
Kamantsev
,
V. V.
Rodionov
,
D. M.
Yusupov
,
V. V.
Rodionova
, and
A. V.
Sadovnikov
, “
A voltage-induced strain to control the magnetization of bi FeRh/PZT and tri PZT/FeRh/PZT layered magnetoelectric composites
,”
AIP Adv.
10
,
025124
(
2020
).
35.
A. A.
Amirov
,
V. V.
Rodionov
,
I. A.
Starkov
,
A. S.
Starkov
, and
A. M.
Aliev
, “
Magneto-electric coupling in Fe48Rh52-PZT multiferroic composite
,”
J. Magn. Magn. Mater.
470
,
77
80
(
2019
).
36.
P. F.
Sullivan
and
G.
Seidel
, “
Steady-state ac-temperature calorimetry
,”
Phys. Rev.
173
,
679
685
(
1968
).
37.
A. M.
Aliev
, “
Direct magnetocaloric effect measurement technique in alternating magnetic fields
,” arXiv:1409.6898.
38.
A. M.
Aliev
,
A. B.
Batdalov
, and
V. S.
Kalitka
, “
Magnetocaloric properties of manganites in alternating magnetic fields
,”
JETP Lett.
90
,
663
666
(
2010
).
39.
V. D.
Buchelnikov
,
V. V.
Sokolovskiy
,
S. V.
Taskaev
,
V. V.
Khovaylo
,
A. A.
Aliev
,
L. N.
Khanov
,
A. B.
Batdalov
,
P.
Entel
,
H.
Miki
, and
T.
Takagi
, “
Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys
,”
J. Phys. D Appl. Phys.
44
,
064012
(
2011
).
40.
A. M.
Aliev
,
A. B.
Batdalov
,
L. N.
Khanov
,
V. V.
Koledov
,
V. G.
Shavrov
,
I. S.
Tereshina
, and
S. V.
Taskaev
, “
Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz
,”
J. Alloys Compd.
676
,
601
605
(
2016
).
41.
S. M.
Podgornykh
and
Y. V.
Shcherbakova
, “
Heat capacity of the La(Fe0.88Si0.12)13 and La(Fe0.88Si0.12)13H1.5 compounds with a large magnetocaloric effect
,”
Phys. Rev. B
73
,
184421
(
2006
).
42.
S. B.
Abdulvagidov
,
A. M.
Aliev
,
A. G.
Gamzatov
,
V. I.
Nizhankovskiĭ
,
H.
Mödge
, and
O.
Yu. Gorbenko
, “
Specific heat of Sm0.55Sr0.45MnO3 manganite in magnetic fields up to 15 T: An anomalous critical behavior of the ferromagnet in magnetic field and the observation of a tricritical point
,”
JETP Lett.
84
,
31
34
(
2006
).
43.
I.
Dubenko
,
A. K.
Pathak
,
S.
Stadler
,
N.
Ali
,
Ya.
Kovarskii
,
V. N.
Prudnikov
,
N. S.
Perov
, and
A. B.
Granovsky
, “
Giant Hall effect in Ni-Mn-In Heusler alloys
,”
Phys. Rev. B
80
,
092408
(
2009
).
44.
A. B.
Granovsky
,
V. N.
Prudnikov
,
A. P.
Kazakov
,
A. P.
Zhukov
, and
I. S.
Dubenko
, “
Determination of the normal and anomalous hall effect coefficients in ferromagnetic Ni50Mn35In15−xSix Heusler alloys at the martensitic transformation
,”
J. Exp. Theor. Phys.
115
,
805
814
(
2012
).
45.
V.
Basso
, “
The magnetocaloric effect at the first-order magneto-elastic phase transition
,”
J. Phys. Condens. Matter
23
,
226004
(
2011
).
46.
J.
Liu
,
T.
Gottschall
,
K. P.
Skokov
,
J. D.
Moore
, and
O.
Gutfleisch
, “
Giant magnetocaloric effect driven by structural transitions
,”
Nat. Mater.
11
,
620
626
(
2012
).
47.
T.
Kihara
,
X.
Xu
,
W.
Ito
,
R.
Kainuma
, and
M.
Tokunaga
, “
Direct measurements of inverse magnetocaloric effect in metamagnetic shape-memory alloy NiCoMnIn
,”
Phys. Rev. B
90
,
214409
(
2014
).
48.
A. M.
Aliev
,
A. B.
Batdalov
, and
L. N.
Khanov
, “
Magnetic and lattice contributions to the magnetocaloric effect in Sm1–xSrxMnO3 manganites
,”
Appl. Phys. Lett.
112
,
142407
(
2018
).
49.
S. A.
Nikitin
,
G.
Myalikgulyev
,
M. P.
Annaorazov
,
A. L.
Tyurin
,
R. W.
Myndyev
, and
S. A.
Akopyan
, “
Giant elastocaloric effect in FeRh alloy
,”
Phys. Lett. A
171
,
234
236
(
1992
).
50.
E.
Stern-Taulats
,
A.
Planes
,
P.
Lloveras
,
M.
Barrio
,
J.-L.
Tamarit
,
S.
Pramanick
,
S.
Majumdar
,
C.
Frontera
, and
L.
Manosa
, “
Barocaloric and magnetocaloric effects in Fe49Rh51
,”
Phys. Rev. B
89
,
214105
(
2014
).
51.
K. A.
Gschneidner
, Jr
,
Y.
Mudryk
, and
V. K.
Pecharsky
, “
On the nature of the magnetocaloric effect of the first-order magnetostructural transition
,”
Scr. Mater.
67
,
572
577
(
2012
).
52.
V.
Franco
,
J. S.
Blázquez
,
B.
Ingale
, and
A.
Conde
, “
The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models
,”
Annu. Rev. Mater. Res.
42
,
305
(
2012
).
53.
E.
Stern-Taulats
,
A.
Gracia-Condal
,
A.
Planes
,
P.
Lloveras
,
M.
Barrio
,
J.-L.
Tamarit
,
S.
Pramanick
,
S.
Majumdar
, and
L.
Mañosa
, “
Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51
,”
Appl. Phys. Lett.
107
,
152409
(
2015
).
54.
A. G.
Gamzatov
,
A. M.
Aliev
,
A.
Ghotbi Varzaneh
,
P.
Kameli
,
I.
Abdolhosseini Sarsari
, and
S. C.
Yu
, “
Inverse-direct magnetocaloric effect crossover in Ni47Mn40Sn12.5Cu0.5 Heusler alloy in cyclic magnetic fields
,”
Appl. Phys. Lett.
113
,
172406
(
2018
).
55.
O.
Gutfleisch
,
T.
Gottschall
,
M.
Fries
,
D.
Benke
,
I.
Radulov
,
K. P.
Skokov
,
H.
Wende
,
M.
Gruner
,
M.
Acet
,
P.
Entel
, and
M.
Farle
, “
Mastering hysteresis in magnetocaloric materials
,”
Philos. Trans. R. Soc. A
374
,
20150308
(
2016
).
You do not currently have access to this content.