Synaptic plasticity forms the basis of memory retention in the human brain. Whereas a low “rehearsal” rate causes short-term changes in the synaptic connections such that the synapse soon “forgets,” a high rehearsal rate ensures long-term retention of memory in the brain. In this paper, we propose an artificial short- and long-term memory magnetic tunnel junction (SALT-MTJ) synapse. Changes in the synaptic strength are mapped to the SALT-MTJ conductance, which is varied stochastically via spin-transfer torque resulting from input current stimuli. A meta-stable intermediate magnetic state of the SALT-MTJ synapse provides short-term synaptic plasticity and the associated forgetting behavior as in a biological synapse. Repeated spin-current stimulations, while the SALT-MTJ remains in the short-term state, then can cause a near-permanent change in the magnetic state and associated conductance to provide long-term potentiation. The synaptic weight sensitivity to the input stimulus and the forgetting behavior of these short- and long-term states can be controlled via shape engineering of the artificial synapse.

1.
M.
Djurfeldt
,
M.
Lundqvist
,
C.
Johansson
,
M.
Rehn
,
O.
Ekeberg
, and
A.
Lansner
, “
Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer
,”
IBM J. Res. Dev.
52
,
31
41
(
2008
).
2.
S.
Kim
,
M.
Ishii
,
S.
Lewis
,
T.
Perri
,
M.
BrightSky
,
W.
Kim
,
R.
Jordan
,
G. W.
Burr
,
N.
Sosa
,
A.
Ray
,
J.
Han
,
C.
Miller
,
K.
Hosokawa
, and
C.
Lam
, “NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning,” in 2015 IEEE International Electron Devices Meeting (IEDM) (
IEEE
,
2015
), pp. 17.1.1–17.1.4.
3.
M.
Suri
,
O.
Bichler
,
D.
Querlioz
,
O.
Cueto
,
L.
Perniola
,
V.
Sousa
,
D.
Vuillaume
,
C.
Gamrat
, and
B.
DeSalvo
, “Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction,” in 2011 International Electron Devices Meeting (
IEEE
,
2011
), pp. 4.4.1–4.4.4.
4.
A.
Chanthbouala
,
V.
Garcia
,
R. O.
Cherifi
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
S.
Xavier
,
H.
Yamada
,
C.
Deranlot
,
N. D.
Mathur
,
M.
Bibes
,
A.
Barthélémy
, and
J.
Grollier
, “
A ferroelectric memristor
,”
Nat. Mater.
11
,
860
864
(
2012
).
5.
D. J.
Kim
,
H.
Lu
,
S.
Ryu
,
C.-W.
Bark
,
C.-B.
Eom
,
E. Y.
Tsymbal
, and
A.
Gruverman
, “
Ferroelectric tunnel memristor
,”
Nano Lett.
12
,
5697
5702
(
2012
).
6.
A. F.
Vincent
,
J.
Larroque
,
N.
Locatelli
,
N. B.
Romdhane
,
O.
Bichler
,
C.
Gamrat
,
W. S.
Zhao
,
J.
Klein
,
S.
Galdin-Retailleau
, and
D.
Querlioz
, “
Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems
,”
IEEE Trans. Biomed. Circuits Syst.
9
,
166
174
(
2015
).
7.
A.
Sengupta
and
K.
Roy
, “
Short-term plasticity and long-term potentiation in magnetic tunnel junctions: Towards volatile synapses
,”
Phys. Rev. Appl.
5
,
024012
(
2016
).
8.
P.
Merolla
,
J.
Arthur
,
F.
Akopyan
,
N.
Imam
,
R.
Manohar
, and
D. S.
Modha
, “A digital neurosynaptic core using embedded crossbar memory with 45 pj per spike in 45 nm,” in 2011 IEEE Custom Integrated Circuits Conference (CICC) (
IEEE
,
2011
), pp. 1–4.
9.
M. M.
Khan
,
D. R.
Lester
,
L. A.
Plana
,
A.
Rast
,
X.
Jin
,
E.
Painkras
, and
S. B.
Furber
, “SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor,” in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (
IEEE
,
2008
), pp. 2849–2856.
10.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
,
B. B.
Bhadviya
,
P.
Mazumder
, and
W.
Lu
, “
Nanoscale memristor device as synapse in neuromorphic systems
,”
Nano Lett.
10
,
1297
1301
(
2010
).
11.
G. W.
Burr
,
R. M.
Shelby
,
S.
Sidler
,
C.
Di Nolfo
,
J.
Jang
,
I.
Boybat
,
R. S.
Shenoy
,
P.
Narayanan
,
K.
Virwani
, and
E. U.
Giacometti
et al., “
Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element
,”
IEEE Trans. Electron Devices
62
,
3498
3507
(
2015
).
12.
M.
Suri
,
D.
Querlioz
,
O.
Bichler
,
G.
Palma
,
E.
Vianello
,
D.
Vuillaume
,
C.
Gamrat
, and
B.
DeSalvo
, “
Bio-inspired stochastic computing using binary CBRAM synapses
,”
IEEE Trans. Electron Devices
60
,
2402
2409
(
2013
).
13.
S.
Yu
,
B.
Gao
,
Z.
Fang
,
H.
Yu
,
J.
Kang
, and
H.-S. P.
Wong
, “
Stochastic learning in oxide binary synaptic device for neuromorphic computing
,”
Front. Neurosci.
7
,
186
(
2013
).
14.
G.
Srinivasan
,
A.
Sengupta
, and
K.
Roy
, “
Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning
,”
Sci. Rep.
6
,
29545
(
2016
).
15.
O.
Akinola
,
X.
Hu
,
C. H.
Bennett
,
M.
Marinella
,
J. S.
Friedman
, and
J. A. C.
Incorvia
, “
Three-terminal magnetic tunnel junction synapse circuits showing spike-timing-dependent plasticity
,”
J. Phys. D Appl. Phys.
52
,
49LT01
(
2019
).
16.
G.-Q.
Bi
and
M.-M.
Poo
, “
Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
,”
J. Neurosci.
18
,
10464
10472
(
1998
).
17.
R. C.
Atkinson
and
R. M.
Shiffrin
, “Human memory: A proposed system and its control processes,” in Psychology of Learning and Motivation, edited by K. W. Spence and J. T. Spence (Academic Press, 1968), Vol. 2, pp. 89–195.
18.
T.
Chang
,
S.-H.
Jo
, and
W.
Lu
, “
Short-term memory to long-term memory transition in a nanoscale memristor
,”
ACS Nano
5
,
7669
7676
(
2011
).
19.
T.
Ohno
,
T.
Hasegawa
,
T.
Tsuruoka
,
K.
Terabe
,
J. K.
Gimzewski
, and
M.
Aono
, “
Short-term plasticity and long-term potentiation mimicked in single inorganic synapses
,”
Nat. Mater.
10
,
591
595
(
2011
).
20.
M.-K.
Kim
and
J.-S.
Lee
, “
Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics
,”
ACS Nano
12
,
1680
1687
(
2018
).
21.
Y.
Sun
,
H.
Xu
,
S.
Liu
,
B.
Song
,
H.
Liu
,
Q.
Liu
, and
Q.
Li
, “
Short-term and long-term plasticity mimicked in low-voltage Ag/GeSe/TiN electronic synapse
,”
IEEE Electron Device Lett.
39
,
492
495
(
2018
).
22.
Z.
Zhang
,
T.
Li
,
Y.
Wu
,
Y.
Jia
,
C.
Tan
,
X.
Xu
,
G.
Wang
,
J.
Lv
,
W.
Zhang
, and
Y.
He
et al., “
Truly concomitant and independently expressed short-and long-term plasticity in a Bi2O2Se-based three-terminal memristor
,”
Adv. Mater.
31
,
1805769
(
2019
).
23.
J. M.
Cruz-Albrecht
,
M. W.
Yung
, and
N.
Srinivasa
, “
Energy-efficient neuron, synapse and STDP integrated circuits
,”
IEEE Trans. Biomed. Circuits Syst.
6
,
246
256
(
2012
).
24.
S.
Hu
,
H.
Wu
,
Y.
Liu
,
T.
Chen
,
Z.
Liu
,
Q.
Yu
,
Y.
Yin
, and
S.
Hosaka
, “
Design of an electronic synapse with spike time dependent plasticity based on resistive memory device
,”
J. Appl. Phys.
113
,
114502
(
2013
).
25.
J. C.
Slonczewski
, “
Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier
,”
Phys. Rev. B
39
,
6995
(
1989
).
26.
M. J.
Donahue
and
D. G.
Porter
, “OOMMF user’s guide, version 1.0 | NIST,” Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, MD, 1999).
27.
M.
Yamanouchi
,
A.
Jander
,
P.
Dhagat
,
S.
Ikeda
,
F.
Matsukura
, and
H.
Ohno
, “
Domain structure in CoFeB thin films with perpendicular magnetic anisotropy
,”
IEEE Magn. Lett.
2
,
3000304
3000304
(
2011
).
28.
S.
Ikeda
,
K.
Miura
,
H.
Yamamoto
,
K.
Mizunuma
,
H. D.
Gan
,
M.
Endo
,
S.
Kanai
,
J.
Hayakawa
,
F.
Matsukura
, and
H.
Ohno
, “
A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction
,”
Nat. Mater.
9
,
721
724
(
2010
).
29.
R.
Dittrich
,
T.
Schrefl
,
D.
Suess
,
W.
Scholz
,
H.
Forster
, and
J.
Fidler
, “
A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems
,”
J. Magn. Magn. Mater.
250
,
12
19
(
2002
).
30.
W. E
W. Ren
and
E.
Vanden-Eijnden
, “
Simplified and improved string method for computing the minimum energy paths in barrier-crossing events
,”
J. Chem. Phys.
126
,
164103
(
2007
).
31.
G. D.
Chaves-O’Flynn
,
E.
Vanden-Eijnden
,
D. L.
Stein
, and
A. D.
Kent
, “
Energy barriers to magnetization reversal in perpendicularly magnetized thin film nanomagnets
,”
J. Appl. Phys.
113
,
023912
(
2013
).
32.
N.
Hassan
,
X.
Hu
,
L.
Jiang-Wei
,
W. H.
Brigner
,
O. G.
Akinola
,
F.
Garcia-Sanchez
,
M.
Pasquale
,
C. H.
Bennett
,
J. A. C.
Incorvia
, and
J. S.
Friedman
, “
Magnetic domain wall neuron with lateral inhibition
,”
J. Appl. Phys.
124
,
152127
(
2018
).
33.
R. C.
O’Handley
,
Modern Magnetic Materials: Principles and Applications
(
Wiley
,
1999
).
You do not currently have access to this content.