We present an experimental and kp theoretical study on the origin of the strong in-plane uniaxial magnetic anisotropy in (Ga,Mn)As layers, unexpected from the cubic crystalline structure. The symmetry lowering can be accounted for by structural or effective shear strains. We find theoretically out-of-plane and in-plane magnetic anisotropy constants being linear with the shear strain. Searching for a real shear strain arising from lattice relaxation, we perform two types of measurements: anomalous x-ray diffraction and strain-induced optical birefringence, at room temperature. Working on a strongly anisotropic (Ga,Mn)As layer, the estimated ϵxy=104 was not found although it lied an order of magnitude above the detection threshold. This ensemble of results indicates as unlikely a relaxation-driven uniaxial anisotropy. As previously suggested theoretically, the magnetic symmetry-lowering could instead originate from the anisotropic incorporation of Mn atoms during growth. This would yield a perfectly in-plane matched lattice, with an anisotropy that could nevertheless be modeled as an effective shear strain and modified by an external shear stress, in agreement with the existing experimental literature.

1.
S.
Iwasaki
,
IEEE Trans. Magn.
16
,
71
(
1980
).
2.
L.
Thevenard
,
B.
Boutigny
,
N.
Güsken
,
L.
Becerra
,
C.
Ulysse
,
S.
Shihab
,
A.
Lemaître
,
J.-V.
Kim
,
V.
Jeudy
, and
C.
Gourdon
,
Phys. Rev. B
95
,
054422
(
2017
).
3.
S.
Davis
,
J. A.
Borchers
,
B. B.
Maranville
, and
S.
Adenwalla
,
J. Appl. Phys.
117
,
063904
(
2015
).
4.
I.
Camara
,
J.-Y.
Duquesne
,
A.
Lemaître
,
C.
Gourdon
, and
L.
Thevenard
,
Phys. Rev. Appl.
11
,
014045
(
2019
).
5.
D.
Givord
,
O. F. K.
McGrath
,
C.
Meyer
, and
J.
Rothman
,
J. Magn. Magn. Mater.
157-158
,
245
(
1996
).
6.
J.
Zemen
,
J.
Kučera
,
K.
Olejník
, and
T.
Jungwirth
,
Phys. Rev. B
80
,
155203
(
2009
).
7.
J.
Li
and
P. M.
Haney
,
Appl. Phys. Lett.
109
,
032405
(
2016
).
8.
O.
Thomas
,
Q.
Shen
,
P.
Schieffer
,
N.
Tournerie
, and
B.
Lépine
,
Phys. Rev. Lett.
90
,
017205
(
2003
).
9.
S.
Zhou
,
L.
Chen
,
A.
Shalimov
,
J.
Zhao
, and
M.
Helm
,
AIP Adv.
2
,
042102
(
2012
).
10.
E. M.
Kneedler
,
B. T.
Jonker
,
P. M.
Thibado
,
R. J.
Wagner
,
B. V.
Shanabrook
, and
L. J.
Whitman
,
Phys. Rev. B
56
,
8163
(
1997
).
11.
M.
Zölfl
,
M.
Brockmann
,
M.
Köhler
,
S.
Kreuzer
,
T.
Schweinböck
,
S.
Miethaner
,
F.
Bensch
, and
G.
Bayreuther
,
J. Magn. Magn. Mater.
175
,
16
(
1997
).
12.
K.
Tivakornsasithorn
,
X.
Liu
,
X.
Li
,
M.
Dobrowolska
, and
J. K.
Furdyna
,
J. Appl. Phys.
116
,
043915
(
2014
).
13.
M.
Birowska
,
C.
Śliwa
,
J. A.
Majewski
, and
T.
Dietl
,
Phys. Rev. Lett.
108
,
237203
(
2012
).
14.
Y.
Hashimoto
,
Y.
Iye
, and
S.
Katsumoto
,
J. Cryst. Growth
378
,
381
(
2013
).
15.
U.
Welp
,
V. K.
Vlasko-Vlasov
,
A.
Menzel
,
H. D.
You
,
X.
Liu
,
J. K.
Furdyna
, and
T.
Wojtowicz
,
Appl. Phys. Lett.
85
,
260
(
2004
).
16.
J.
Wunderlich
,
A. C.
Irvine
,
J.
Zemen
,
V.
Holý
,
A. W.
Rushforth
,
E.
De Ranieri
,
U.
Rana
,
K.
Výborný
,
J.
Sinova
,
C. T.
Foxon
,
R. P.
Campion
,
D. A.
Williams
,
B. L.
Gallagher
, and
T.
Jungwirth
,
Phys. Rev. B
76
,
054424
(
2007
).
17.
J.
Shiogai
,
D.
Schuh
,
W.
Wegscheider
,
M.
Kohda
,
J.
Nitta
, and
D.
Weiss
,
Appl. Phys. Lett.
98
,
98
(
2011
).
18.
M.
Sawicki
,
K.-Y.
Wang
,
K. W.
Edmonds
,
R. P.
Campion
,
C. R.
Staddon
,
N. R. S.
Farley
,
C. T.
Foxon
,
E.
Papis
,
E.
Kamińska
,
A.
Piotrowska
,
T.
Dietl
, and
B. L.
Gallagher
,
Phys. Rev. B
71
,
121302
(
2005
).
19.
S.
Piano
,
X.
Marti
,
A. W.
Rushforth
,
K. W.
Edmonds
,
R. P.
Campion
,
M.
Wang
,
O.
Caha
,
T. U.
Schülli
,
V.
Holý
, and
B. L.
Gallagher
,
Appl. Phys. Lett.
98
,
152503
(
2011
).
20.
S.
van Dijken
,
G.
Di Santo
, and
B.
Poelsema
,
Appl. Phys. Lett.
77
,
2030
(
2000
).
21.
A.
Muñoz-Noval
,
E.
Salas-Colera
, and
R.
Ranchal
,
J. Phys. Chem. C
123
,
13131
(
2019
).
22.
A. W.
Rushforth
,
E.
De Ranieri
,
J.
Zemen
,
J.
Wunderlich
,
K. W.
Edmonds
,
C. S.
King
,
E.
Ahmad
,
R. P.
Campion
,
C. T.
Foxon
,
B. L.
Gallagher
,
K.
Výborný
,
J.
Kučera
, and
T.
Jungwirth
,
Phys. Rev. B
78
,
085314
(
2008
).
23.
M.
Birowska
,
J. Magn. Magn. Mater.
432
,
396
(
2017
).
24.
H.
Subramanian
and
J. E.
Han
,
J. Phys. Condens. Matter
25
,
206005
(
2013
).
25.
M.
Kopecký
,
J.
Kub
,
F.
Máca
,
J.
Mažek
,
O.
Pacherová
,
A. W.
Rushforth
,
B. L.
Gallagher
,
R. P.
Campion
,
V.
Novák
, and
T.
Jungwirth
,
Phys. Rev. B
83
,
235324
(
2011
).
26.
P.
Kuszewski
,
I. S.
Camara
,
N.
Biarrotte
,
L.
Becerra
,
J.
von Bardeleben
,
W.
Savero Torres
,
A.
Lemaître
,
C.
Gourdon
,
J.-Y.
Duquesne
, and
L.
Thevenard
,
J. Phys. Condens. Matter
30
,
244003
(
2018
).
27.
P.
Kuszewski
,
J.-Y.
Duquesne
,
L.
Becerra
,
A.
Lemaître
,
S.
Vincent
,
S.
Majrab
,
F.
Margaillan
,
C.
Gourdon
, and
L.
Thevenard
,
Phys. Rev. Appl.
10
,
034036
(
2018
).
28.
D. K.
Biegelsen
,
R. D.
Bringans
,
J. E.
Northrup
, and
L.-E.
Swartz
,
Phys. Rev. B
41
,
5701
(
1990
).
29.
Q.
Xue
,
T.
Hashizume
,
J. M.
Zhou
,
T.
Sakata
,
T.
Ohno
, and
T.
Sakurai
,
Phys. Rev. Lett.
74
,
3177
(
1995
).
30.
M. S.
Brandt
,
S. T. B.
Goennenwein
,
T. A.
Wassner
,
F.
Kohl
,
A.
Lehner
,
H.
Huebl
,
T.
Graf
,
M.
Stutzmann
,
A.
Koeder
,
W.
Schoch
, and
A.
Waag
,
Appl. Phys. Lett.
84
,
2277
(
2004
).
31.
S. T. B.
Goennenwein
,
T.
Graf
,
T.
Wassner
,
M. S.
Brandt
,
M.
Stutzmann
,
J. B.
Philipp
,
R.
Gross
,
M.
Krieger
,
K.
Zurn
,
P.
Ziemann
,
A.
Koeder
,
S.
Frank
,
W.
Schoch
, and
A.
Waag
,
Appl. Phys. Lett.
82
,
730
(
2003
).
32.
P.
Němec
,
V.
Novák
,
N.
Tesařová
,
E.
Rozkotová
,
H.
Reichlová
,
D.
Butkovičová
,
F.
Trojánek
,
K.
Olejník
,
P.
Malý
,
R.
Campion
,
B.
Gallagher
,
J.
Sinova
, and
T.
Jungwirth
,
Nat. Commun.
4
,
1422
(
2013
).
33.
A.
Chernyshov
,
M.
Overby
,
X.
Liu
,
J. K.
Furdyna
,
Y.
Lyanda-Geller
, and
L. P.
Rokhinson
,
Nat. Phys.
5
,
656
(
2009
).
34.
D.
Fang
,
H.
Kurebayashi
,
J.
Wunderlich
,
K.
Výborný
,
L. P.
Zârbo
,
R. P.
Campion
,
A.
Casiraghi
,
B. L.
Gallagher
,
T.
Jungwirth
, and
A. J.
Ferguson
,
Nat. Nanotechnol.
6
,
413
(
2011
).
35.
V. K.
Vlasko-Vlasov
,
W. K.
Kwok
,
S.
Dong
,
X.
Liu
,
M.
Dobrowolska
, and
J. K.
Furdyna
,
Phys. Rev. B
98
,
180411
(
2018
).
36.
K.
Khazen
,
H.
von Bardeleben
,
J.
Cantin
,
L.
Thevenard
,
L.
Largeau
,
O.
Mauguin
, and
A.
Lemaître
,
Phys. Rev. B
77
,
165204
(
2008
).
37.
Using Fig. 4 of Ref. 32, we calculated their K2 and K2 using Kout(mT) = B2-μ0Ms/2 and assumed that all Mn were magnetically active to convert their anisotropy fields (Kout,Ku) into anisotropy constants.
38.
S.
Haghgoo
,
M.
Cubukcu
,
H. J.
von Bardeleben
,
L.
Thevenard
,
A.
Lemaître
, and
C.
Gourdon
,
Phys. Rev. B
82
,
041301(R)
(
2010
).
39.
L.
Thevenard
,
C.
Gourdon
,
S.
Haghgoo
,
J.-P.
Adam
,
H. J.
von Bardeleben
,
A.
Lemaître
,
W.
Schoch
, and
A.
Thiaville
,
Phys. Rev. B
83
,
245211
(
2011
).
40.
L.
Thevenard
,
E.
Peronne
,
C.
Gourdon
,
C.
Testelin
,
M.
Cubukcu
,
E.
Charron
,
S.
Vincent
,
A.
Lemaître
, and
B.
Perrin
,
Phys. Rev. B
82
,
104422
(
2010
).
41.
M.
Cubukcu
,
H. J.
von Bardeleben
,
K.
Khazen
,
J. L.
Cantin
,
O.
Mauguin
,
L.
Largeau
, and
A.
Lemaître
,
Phys. Rev. B
81
,
041202
(
2010
).
42.
H.
Riahi
,
W.
Ouerghui
,
L.
Thevenard
,
C.
Gourdon
,
M.
Maaref
,
A.
Lemaître
,
O.
Mauguin
, and
C.
Testelin
,
J. Magn. Magn. Mater.
342
,
149
(
2013
).
43.
S.
Shihab
,
H.
Riahi
,
L.
Thevenard
,
H. J.
von Bardeleben
,
A.
Lemaître
, and
C.
Gourdon
,
Appl. Phys. Lett.
106
,
142408
(
2015
).
44.
F.
Matsukura
and
H.
Ohno
,
Jpn. J. Appl. Phys.
54
,
098003
(
2015
).
45.
J. M.
Luttinger
and
W.
Kohn
,
Phys. Rev.
97
,
869
(
1955
).
46.
M.
Yahyaoui
,
K.
Boujdaria
,
M.
Cubukcu
,
C.
Testelin
, and
C.
Gourdon
,
J. Phys. Condens. Matter
25
,
346001
(
2013
).
47.
O.
Madelung
,
U.
Rossler
, and
M.
Schulz
, Landolt-Bornstein, New Series, Group III, Vol. 41 (Berlin, Springer-Verlag, 2005).
48.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibert
, and
e. D.
Ferrand
,
Science
287
,
1019
(
2000
).
49.
T.
Dietl
,
H.
Ohno
, and
F.
Matsukura
,
Phys. Rev. B
63
,
195205
(
2001
).
50.
G.
Pikus
and
G.
Bir
,
Tverd. Tela (Leningrad)
1
,
1642
(
1960
).
51.
G. G.
Koster
,
J.
Dimmock
,
R. G.
Wheeler
, and
H.
Statz
,
Properties of the Thirty-Two Point Groups
(
MIT Press
,
1963
), Vol. 24.
52.
The basis wave functions used for the matrix representation of HS are extracted from Table 83, p. 94, of Koster et al.51  representing the direct product of two irreducible representations, namely, Γ5Γ6=Γ7+Γ8. In this Table, (uyz5,uxz5,uxy5) indicate (X,Y,Z) p orbitals, v1/26= and v1/26= where () indicates spin up (spin down) states. ψ1/27=|12,12> and ψ1/27=|12,12> represent the usual split-off valence bands (VBs), ψ3/28=|32,12> and ψ3/28=|32,12> indicate the light-hole VBs, ψ1/28=|32,32> and ψ1/28=|32,32> represent the heavy-hole VBs.
53.
M.
Glunk
,
J.
Daeubler
,
L.
Dreher
,
S.
Schwaiger
,
W.
Schoch
,
R.
Sauer
,
W.
Limmer
,
A.
Brandlmaier
,
S.
Goennenwein
,
C.
Bihler
et al.,
Phys. Rev. B
79
,
195206
(
2009
).
54.
I.
Vurgaftman
,
J. Á.
Meyer
, and
L. Á.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
55.
M.
Yahyaoui
,
C.
Testelin
,
C.
Gourdon
, and
K.
Boujdaria
,
J. Appl. Phys.
111
,
033902
(
2012
).
56.
Magnetism I- Fundamentals, edited by E. du Trémolet de Lacheisserie D. Gignoux, and M. Schlenker (Kluwer Academic Publishers, 2003).
57.
R.
Grössinger
,
R. S.
Turtelli
, and
N.
Mehmood
, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2014), Vol. 60, p. 012002.
58.
S. C.
Masmanidis
,
H. X.
Tang
,
E. B.
Myers
,
M.
Li
,
K.
De Greve
,
G.
Vermeulen
,
W.
Van Roy
, and
M. L.
Roukes
,
Phys. Rev. Lett.
95
,
187206
(
2005
).
59.
T. U.
Schülli
,
M.
Sztucki
,
V.
Chamard
,
T. H.
Metzger
, and
D.
Schuh
,
Appl. Phys. Lett.
81
,
448
(
2002
).
60.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solids
(
Springer-Verlag
,
Heidelberg
,
2001
).
61.
P.
Etchegoin
,
J.
Kircher
,
M.
Cardona
,
C.
Grein
, and
E.
Bustarret
,
Phys. Rev. B
46
,
15139
(
1992
).
62.
M.
Cardona
,
D.
Rönnow
, and
P. V.
Santos
,
Thin Solid Films
313
,
10
(
1998
).
63.
P. V.
Santos
,
Appl. Phys. Lett.
74
,
4002
(
1999
).
64.
K.
Sato
,
Jpn. J. Appl. Phys.
20
,
2403
(
1981
).
You do not currently have access to this content.