The spin Seebeck effect (SSE) is an emergent thermoelectric phenomenon, which enables a thermal-to-electrical energy conversion via the thermal injection of spin currents from a ferromagnet (FM) into an attached paramagnetic metal (PM). Recent studies have revealed that the SSE is very sensitive to the PM/FM interface condition, suggesting a potential way to enhance the SSE by controlling the interface condition. However, most of the previous studies are limited to conventional Pt/bulk single-crystal or thin-film YIG systems, lacking consideration for mesoscale surface defects such as pores and grain grooves, which frequently exist in more prevalent bulk polycrystalline magnets. Here, we investigate the effect of interface condition on the longitudinal SSE (LSSE) in a Pt/polycrystalline NiFe2O4 (NFO) slab system. Different interface conditions are induced by treating the surface of NFO slabs with varying combinations of polishing force (Fp) and post-annealing temperature (Ta) before the Pt deposition. The resultant LSSE signals show strong correlations with different interface parameters. In particular, we find that mesoscale surface defects (cracks, pores, and grain grooves) and the surface roughness play a crucial role in determining the magnitude of LSSE signals and demonstrate that those parameters can be deliberately controlled by properly choosing Fp and Ta. We report one sample with a spin Seebeck coefficient of 0.58 μV/K, which is significantly larger than that of bulk polycrystalline magnets reported thus far.

1.
K.
Uchida
,
S.
Takahashi
,
K.
Harii
,
J.
Ieda
,
W.
Koshibae
,
K.
Ando
,
S.
Maekawa
, and
E.
Saitoh
,
Nature
455
(
7214
),
778
781
(
2008
).
2.
C. M.
Jaworski
,
J.
Yang
,
S.
Mack
,
D. D.
Awschalom
,
J. P.
Heremans
, and
R. C.
Myers
,
Nat. Mater.
9
(
11
),
898
903
(
2010
).
3.
K.
Uchida
,
J.
Xiao
,
H.
Adachi
,
J.
Ohe
,
S.
Takahashi
,
J.
Ieda
,
T.
Ota
,
Y.
Kajiwara
,
H.
Umezawa
,
H.
Kawai
,
G. E. W.
Bauer
,
S.
Maekawa
, and
E.
Saitoh
,
Nat. Mater.
9
(
11
),
894
897
(
2010
).
4.
K.
Uchida
,
H.
Adachi
,
T.
Ota
,
H.
Nakayama
,
S.
Maekawa
, and
E.
Saitoh
,
Appl. Phys. Lett.
97
(
17
),
172505
(
2010
).
5.
G. E. W.
Bauer
,
E.
Saitoh
, and
B. J.
van Wees
,
Nat. Mater.
11
(
5
),
391
399
(
2012
).
6.
S. R.
Boona
,
R. C.
Myers
, and
J. P.
Heremans
,
Energy Environ. Sci.
7
(
3
),
885
910
(
2014
).
7.
S. R.
Boona
,
S. J.
Watzman
, and
J. P.
Heremans
,
APL Mater.
4
(
10
),
104502
(
2016
).
8.
K.
Uchida
,
H.
Adachi
,
T.
Kikkawa
,
A.
Kirihara
,
M.
Ishida
,
S.
Yorozu
,
S.
Maekawa
, and
E.
Saitoh
,
Proc. IEEE
104
(
10
),
1946
1973
(
2016
).
9.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
,
Appl. Phys. Lett.
88
(
18
),
182509
(
2006
).
10.
S. M.
Wu
,
W.
Zhang
,
A.
KC
,
P.
Borisov
,
J. E.
Pearson
,
J. S.
Jiang
,
D.
Lederman
,
A.
Hoffmann
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
116
(
9
),
097204
(
2016
).
11.
J.
Li
,
Z.
Shi
,
V. H.
Ortiz
,
M.
Aldosary
,
C.
Chen
,
V.
Aji
,
P.
Wei
, and
J.
Shi
,
Phys. Rev. Lett.
122
(
21
),
217204
(
2019
).
12.
S. M.
Wu
,
J. E.
Pearson
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
114
(
18
),
186602
(
2015
).
13.
H.
Adachi
,
K.
Uchida
,
E.
Saitoh
,
J.
Ohe
,
S.
Takahashi
, and
S.
Maekawa
,
Appl. Phys. Lett.
97
(
25
),
252506
(
2010
).
14.
J.
Xiao
,
G. E. W.
Bauer
,
K.
Uchida
,
E.
Saitoh
, and
S.
Maekawa
,
Phys. Rev. B
81
(
21
),
214418
(
2010
).
15.
K.
Uchida
,
H.
Adachi
,
T.
An
,
T.
Ota
,
M.
Toda
,
B.
Hillebrands
,
S.
Maekawa
, and
E.
Saitoh
,
Nat. Mater.
10
(
10
),
737
741
(
2011
).
16.
M.
Schreier
,
A.
Kamra
,
M.
Weiler
,
J.
Xiao
,
G. E. W.
Bauer
,
R.
Gross
, and
S. T. B.
Goennenwein
,
Phys. Rev. B
88
(
9
),
094410
(
2013
).
17.
K.
Uchida
,
T.
Kikkawa
,
A.
Miura
,
J.
Shiomi
, and
E.
Saitoh
,
Phys. Rev. X
4
(
4
),
041023
(
2014
).
18.
H.
Jin
,
S. R.
Boona
,
Z.
Yang
,
R. C.
Myers
, and
J. P.
Heremans
,
Phys. Rev. B
92
(
5
),
054436
(
2015
).
19.
A.
Kehlberger
,
U.
Ritzmann
,
D.
Hinzke
,
E. J.
Guo
,
J.
Cramer
,
G.
Jakob
,
M. C.
Onbasli
,
D. H.
Kim
,
C. A.
Ross
,
M. B.
Jungfleisch
,
B.
Hillebrands
,
U.
Nowak
, and
M.
Klaui
,
Phys. Rev. Lett.
115
(
9
),
096602
(
2015
).
20.
T.
Kikkawa
,
K.
Uchida
,
S.
Daimon
,
Z.
Qiu
,
Y.
Shiomi
, and
E.
Saitoh
,
Phys. Rev. B
92
(
6
),
064413
(
2015
).
21.
E. J.
Guo
,
J.
Cramer
,
A.
Kehlberger
,
C. A.
Ferguson
,
D. A.
MacLaren
,
G.
Jakob
, and
M.
Klaui
,
Phys. Rev. X 
6
(
3
),
031012
(
2016
).
22.
S. M.
Rezende
,
R. L.
Rodriguez-Suarez
,
R. O.
Cunha
,
J. C. L.
Ortiz
, and
A.
Azevedo
,
J. Magn. Magn. Mater.
400
,
171
177
(
2016
).
23.
H.
Chang
,
P. A. P.
Janantha
,
J.
Ding
,
T.
Liu
,
K.
Cline
,
J. N.
Gelfand
,
W.
Li
,
M. C.
Marconi
, and
M.
Wu
,
Sci. Adv.
3
(
4
),
e1601614
(
2017
).
24.
A.
Miura
,
T.
Kikkawa
,
R.
Iguchi
,
K.
Uchida
,
E.
Saitoh
, and
J.
Shiomi
,
Phys. Rev. Mater.
1
(
1
),
014601
(
2017
).
25.
A.
Prakash
,
B.
Flebus
,
J.
Brangham
,
F.
Yang
,
Y.
Tserkovnyak
, and
J. P.
Heremans
,
Phys. Rev. B
97
(
2
),
020408
(
2018
).
26.
J. D.
Adam
,
L. E.
Davis
,
G. F.
Dionne
,
E. F.
Schloemann
, and
S. N.
Stitzer
,
IEEE Trans. Microwave Theory Tech.
50
(
3
),
721
737
(
2002
).
27.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
,
J. Phys. D Appl. Phys.
43
(
26
),
264002
(
2010
).
28.
J. C.
Rojas-Sanchez
,
N.
Reyren
,
P.
Laczkowski
,
W.
Savero
,
J. P.
Attane
,
C.
Deranlot
,
M.
Jamet
,
J. M.
George
,
L.
Vila
, and
H.
Jaffres
,
Phys. Rev. Lett.
112
(
10
),
106602
(
2014
).
29.
W.
Zhang
,
W.
Han
,
X.
Jiang
,
S. H.
Yang
, and
S. S. P.
Parkin
,
Nat. Phys.
11
(
6
),
496
502
(
2015
).
30.
X.
Tao
,
Q.
Liu
,
B.
Miao
,
R.
Yu
,
Z.
Feng
,
L.
Sun
,
B.
You
,
J.
Du
,
K.
Chen
,
S.
Zhang
,
L.
Zhang
,
Z.
Yuan
,
D.
Wu
, and
H.
Ding
,
Sci. Adv.
4
(
6
),
eaat1670
(
2018
).
31.
A.
Aqeel
,
I. J.
Vera-Marun
,
B. J.
Van Wees
, and
T. T. M.
Palstra
,
J. Appl. Phys.
116
(
15
),
153705
(
2014
).
32.
K.
Uchida
,
J.
Ohe
,
T.
Kikkawa
,
S.
Daimon
,
D.
Hou
,
Z.
Qiu
, and
E.
Saitoh
,
Phys. Rev. B
92
(
1
),
014415
(
2015
).
33.
V.
Kalappattil
,
R.
Das
,
M. H.
Phan
, and
H.
Srikanth
,
Sci. Rep.
7
,
13316
(
2017
).
34.
S.
Hirata
,
T.
Ono
,
Y.
Amemiya
,
T.
Tabei
, and
S.
Yokoyama
,
Jpn. J. Appl. Phys.
56
(
4
),
04CN04
(
2017
).
35.
Y.
Saiga
,
K.
Mizunuma
,
Y.
Kono
,
J. C.
Ryu
,
H.
Ono
,
M.
Kohda
, and
E.
Okuno
,
Appl. Phys. Express
7
(
9
),
093001
(
2014
).
36.
Z.
Qiu
,
D.
Hou
,
K.
Uchida
, and
E.
Saitoh
,
J. Phys. D Appl. Phys.
48
(
16
),
164013
(
2015
).
37.
F.
Navarro-Pardo
,
G.
Martinez-Barrera
,
A. L.
Martinez-Hernandez
,
V. M.
Castano
,
J. L.
Rivera-Armenta
,
F.
Medellin-Rodriguez
, and
C.
Velasco-Santos
,
Materials
6
(
8
),
3494
3513
(
2013
).
38.
A. T.
Nelson
,
J. T.
White
,
D. A.
Andersson
,
J. A.
Aguiar
,
K. J.
McClellan
,
D. D.
Byler
,
M. P.
Short
, and
C. R.
Stanek
,
J. Am. Ceram. Soc.
97
(
5
),
1559
1565
(
2014
).
39.
J. D.
Arboleda
,
O.
Arnache
,
M. H.
Aguirre
,
R.
Ramos
,
A.
Anadon
, and
M. R.
Ibarra
,
Solid State Commun.
270
,
140
146
(
2018
).
40.
K.
Uchida
,
T.
Nonaka
,
T.
Ota
, and
E.
Saitoh
,
Appl. Phys. Lett.
97
(
26
),
262504
(
2010
).
41.
W. W.
Mullins
,
J. Appl. Phys.
28
(
3
),
333
339
(
1957
).
42.
Z.
Qiu
,
K.
Ando
,
K.
Uchida
,
Y.
Kajiwara
,
R.
Takahashi
,
H.
Nakayama
,
T.
An
,
Y.
Fujikawa
, and
E.
Saitoh
,
Appl. Phys. Lett.
103
(
9
),
092404
(
2013
).
43.
J. D.
Arboleda
,
O. A.
Olmos
,
M. H.
Aguirre
,
R.
Ramos
,
A.
Anadon
, and
M. R.
Ibarra
,
Appl. Phys. Lett.
108
(
23
),
232401
(
2016
).
44.
R.
Iguchi
,
K.
Uchida
,
S.
Daimon
, and
E.
Saitoh
,
Phys. Rev. B
95
(
17
),
174401
(
2017
).

Supplementary Material

You do not currently have access to this content.