Topological materials are considered as a novel quantum state of matter, which can be characterized by symmetry-protected Dirac interfacial states, and exhibit an exotic phenomenon when combined with the other phases. The topological phase in the perovskite structures is important since it can provide various heterostructure interfaces with multifunctional properties. Alpha-(α-) phase cesium-based halide perovskites CsSnX3 (X = I, Br, Cl) can be considered as a promising candidate for topological semiconductors under hydrostatic pressures. The narrow bandgap of these compounds (≤1.83 eV) has made them interesting materials for the electronic, optoelectronic, and photovoltaic applications. In the current research, we systematically carry out first-principles density functional theory (DFT) to study the effects of hydrostatic pressure on the electronic structure of CsSnX3 (X = I, Br, Cl) compounds. The topological phase of these compositions is investigated using the Fu–Kane and Wilson loop methods in order to identify the Z2 topological invariants for each structure. The topological surface states (TSSs) of the (001) plane of these compounds are investigated using the semi-infinite Green's function. These TSSs guarantee the nontrivial nature of CsSnX3 compounds under pressure. With respect to the engineering applications, three important mechanical properties of these compounds including elastic anisotropy, ductility, and hardness are also investigated.

1.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
(
4
),
3045
(
2010
).
2.
C.
Nayak
 et al, “
Non-Abelian anions and topological quantum computation
,”
Rev. Mod. Phys.
80
(
3
),
1083
(
2008
).
3.
L. D.
Landau
, “
Theory of phase transformations
,”
Zh. Eksp. Teor. Fiz.
7
,
19
32
(
1937
).
4.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
, “
Topological insulators in three dimensions
,”
Phys. Rev. Lett.
98
(
10
),
106803
(
2007
).
5.
J. E.
Moore
and
L.
Balents
, “
Topological invariants of time-reversal-invariant band structures
,”
Phys. Rev. B
75
(
12
),
121306
(
2007
).
6.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
(
5806
),
1757
1761
(
2006
).
7.
M. S.
Bahramy
 et al, “
Emergent quantum confinement at topological insulator surfaces
,”
Nat. Commun.
3
,
1159
(
2012
).
8.
Y. L.
Chen
 et al, “
Experimental realization of a three-dimensional topological insulator, Bi2Te3
,”
Science
325
(
5937
),
178
181
(
2009
).
9.
H.
Zhang
 et al, “
Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface
,”
Nat. Phys.
5
(
6
),
438
(
2009
).
10.
T.
Zhang
 et al, “
Experimental demonstration of topological surface states protected by time-reversal symmetry
,”
Phys. Rev. Lett.
103
(
26
),
266803
(
2009
).
11.
L.
Fu
, “
Topological crystalline insulators
,”
Phys. Rev. Lett.
106
(
10
),
106802
(
2011
).
12.
R. S.
Mong
,
A. M.
Essin
, and
J. E.
Moore
, “
Antiferromagnetic topological insulators
,”
Phys. Rev. B
81
(
24
),
245209
(
2010
).
13.
S.
Liu
 et al, “
Strain-induced ferroelectric topological insulator
,”
Nano Lett.
16
(
3
),
1663
1668
(
2016
).
14.
M.
Dzero
 et al, “
Topological Kondo insulators
,”
Phys. Rev. Lett.
104
(
10
),
106408
(
2010
).
15.
Z.
Zhu
,
Y.
Cheng
, and
U.
Schwingenschlögl
, “
Band inversion mechanism in topological insulators: A guideline for materials design
,”
Phys. Rev. B
85
(
23
),
235401
(
2012
).
16.
X.
Dai
 et al, “
Helical edge and surface states in HgTe quantum wells and bulk insulators
,”
Phys. Rev. B
77
(
12
),
125319
(
2008
).
17.
I. Y.
Sklyadneva
 et al, “
Pressure-induced topological phases of KNa2Bi
,”
Sci. Rep.
6
,
24137
(
2016
).
18.
J.
Burschka
 et al, “
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
,”
Nature
499
(
7458
),
316
(
2013
).
19.
G.
Hodes
, “
Perovskite-based solar cells
,”
Science
342
(
6156
),
317
318
(
2013
).
20.
I.
Chung
,
B.
Lee
,
J.
He
,
R. P. H.
Chang
, and
M. G.
Kanatzidis
, “
All-solid-state dye-sensitized solar cells with high efficiency
,”
Nature
485
(
7399
),
486
(
2012
).
21.
G.
Murtaza
and
I.
Ahmad
, “
First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=Cl, Br, I)
,”
Physica B
406
(
17
),
3222
3229
(
2011
).
22.
W.
Zhang
,
G. E.
Eperon
, and
H. J.
Snaith
, “
Metal halide perovskites for energy applications
,”
Nat. Energy
1
(
6
),
16048
(
2016
).
23.
W.-J.
Yin
,
T.
Shi
, and
Y.
Yan
. “
Unique properties of halide perovskites as possible origins of the superior solar cell performance
,”
Adv. Mater.
26
(
27)
,
4653
4658
(
2014
).
24.
T. C.
Jellicoe
 et al, “
Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals
,”
J. Am. Chem. Soc.
138
(
9
),
2941
2944
(
2016
).
25.
L.-J.
Chen
 et al, “
Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application
,”
J. Phys. Chem. Lett.
7
(
24
),
5028
5035
(
2016
).
26.
X.
Lao
 et al, “
Highly controllable synthesis and DFT calculations of double/triple-halide CsPbX3 (X = Cl, Br, I) perovskite quantum dots: Application to light-emitting diodes
,”
Nanomaterials
9
(
2
),
172
(
2019
).
27.
H.
Ayatullahah
 et al, “
Physical properties of CsSnM3 (M = Cl, Br, I): A first principle study
,”
Acta Phys. Polym.
124
,
102
107
(
2013
).
28.
S.
Sharma
,
N.
Weiden
, and
A.
Weiss
, “
Phase transitions in CsSnCl3 and CsPbBr3 An NMR and NQR study
,”
Z. Naturforsch. A
46
(
4
),
329
336
(
1991
).
29.
A. S.
Voloshinovskii
 et al, “
Luminescence and structural transformations of CsSnCl3 crystals
,”
J. Appl. Spectrosc.
60
(
3
),
226
228
(
1994
).
30.
S. J.
Clark
,
C. D.
Flint
, and
J. D.
Donaldson
, “
Luminescence and electrical conductivity of CsSnBr3, and related phases
,”
J. Phys. Chem. Solids
42
(
3
),
133
135
(
1981
).
31.
S. K.
Bose
,
S.
Satpathy
, and
O.
Jepsen
, “
Semiconducting CsSnBr3
,”
Phys. Rev. B
47
(
8
),
4276
(
1993
).
32.
I.
Chung
 et al, “
CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions
,”
J. Am. Chem. Soc.
134
(
20
),
8579
8587
(
2012
).
33.
S.-D.
Guo
and
J.-L.
Wang
, “
Potential thermoelectric materials CsMI3 (M=Sn and Pb) in perovskite structures from first-principles calculations
,”
RSC Adv.
6
(
103
),
101552
101559
(
2016
).
34.
J.-C.
Zheng
,
C. H. A.
Huan
,
A. T. S.
Wee
, and
M. H.
Kuok
, “
Electronic properties of CsSnBr3: Studies by experiment and theory
,”
Surf. Interface Anal.
28
(
1
),
81
83
(
1999
).
35.
K.
Yamada
 et al, “
Structural phase transitions of the polymorphs of CsSnI3 by means of Rietveld analysis of the X-ray diffraction
,”
Chem. Lett.
20
(
5
),
801
804
(
1991
).
36.
L.-Y.
Huang
and
W. R.
Lambrecht
, “
Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3
,”
Phys. Rev. B
88
(
16
),
165203
(
2013
).
37.
L.-Y.
Huang
and
W. R.
Lambrecht
, “
Lattice dynamics in perovskite halides CsSnX3 with X = I, Br, Cl
,”
Phys. Rev. B
90
(
19
),
195201
(
2014
).
38.
G.
Xiao
 et al, “
Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals
,”
J. Am. Chem. Soc.
139
(
29
),
10087
10094
(
2017
).
39.
Y.
Ying
,
X.
Luo
and
H.
Huang
, “
Pressure-induced topological nontrivial phase and tunable optical properties in all-inorganic halide perovskites
,”
J. Phys. Chem. C
122
(
31
),
17718
17725
(
2018
).
40.
M. G.
Brik
, “
Comparative first-principles calculations of electronic, optical and elastic anisotropy properties of CsXBr3 (X = Ca, Ge, Sn) crystals
,”
Solid State Commun.
151
(
23
),
1733
1738
(
2011
).
41.
H.
Jin
,
J.
Im
, and
A. J.
Freeman
, “
Topological insulator phase in halide perovskite structures
,”
Phys. Rev. B
86
(
12
),
121102
(
2012
).
42.
W.-J.
Shi
 et al, “
Converting normal insulators into topological insulators via tuning orbital levels
,”
Phys. Rev. B
92
(
20
),
205118
(
2015
).
43.
J.
Mannhart
and
D. G.
Schlom
, “
Oxide interfaces—An opportunity for electronics
,”
Science
327
(
5973
),
1607
1611
(
2010
).
44.
H. Y.
Hwang
 et al, “
Emergent phenomena at oxide interfaces
,”
Nat. Mater.
11
(
2
),
103
(
2012
).
45.
K.
Schwarz
and
P.
Blaha
, “
Solid state calculations using WIEN2k
,”
Comput. Mater. Sci.
28
(
2
),
259
273
(
2003
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
47.
P.
Deák
 et al, “
Accurate defect levels obtained from the HSE06 range-separated hybrid functional
,”
Phys. Rev. B
81
(
15
),
153203
(
2010
).
48.
D.
Koller
,
F.
Tran
, and
P.
Blaha
, “
Merits and limits of the modified Becke-Johnson exchange potential
,”
Phys. Rev. B
83
(
19
),
195134
(
2011
).
49.
P.
Dufek
,
P.
Blaha
, and
K.
Schwarz
, “
Applications of Engel and Vosko’s generalized gradient approximation in solids
,”
Phys. Rev. B
50
(
11
),
7279
(
1994
).
50.
M.
Råsander
and
M. A.
Moram
, “
On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors
,”
J. Chem. Phys.
143
(
14
),
144104
(
2015
).
51.
A. A.
Mostofi
 et al, “
Wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
178
(
9
),
685
699
(
2008
).
52.
D.
Gresch
 et al, “
Z2pack: Numerical implementation of hybrid Wannier centers for identifying topological materials
,”
Phys. Rev. B
95
(
7
),
075146
(
2017
).
53.
M. L.
Sancho
,
J. M.
López Sancho
, and
J.
Rubio
, “
Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)
,”
J. Phys. F Met. Phys.
14
(
5
),
1205
(
1984
).
54.
M. L.
Sancho
 et al, “
Highly convergent schemes for the calculation of bulk and surface Green functions
,”
J. Phys. F: Met. Phys.
15
(
4
),
851
(
1985
).
55.
L.
Fu
and
C. L.
Kane
, “
Topological insulators with inversion symmetry
,”
Phys. Rev. B
76
(
4
),
045302
(
2007
).
56.
F.
Birch
, “
Finite elastic strain of cubic crystals
,”
Phys. Rev.
71
(
11
),
809
(
1947
).
57.
F. D.
Murnaghan
, “
The compressibility of media under extreme pressures
,”
Proc. Natl. Acad. Sci. U.S.A.
30
(
9
),
244
(
1944
).
58.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon Press
,
1954
).
59.
Z. Q.
Lv
 et al, “
Structural, electronic and elastic properties of the Laves phases WFe2, MoFe2, WCr2 and MoCr2 from first-principles
,”
Solid State Sci.
56
,
16
22
(
2016
).
60.
M.
Zenasni
 et al, “
First-principles investigation on the mechanical and electronic properties of novel Pb1− x Cex Y alloys (Y = S, Se, and Te): An ab initio study
,”
Mater. Res. Express
4
(
9
),
095903
(
2017
).
61.
M.
Faghihnasiri
 et al, “
Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene
,”
J. Appl. Phys.
125
(
14
),
145107
(
2019
).
62.
S.
Yalameha
and
A.
Vaez
, “
Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds
,”
Int. J. Mod. Phys. B
32
(
11
),
1850129
(
2018
).
63.
G. N.
Greaves
 et al, “
Poisson's ratio and modern materials
,”
Nat. Mater.
10
(
11
),
823
837
(
2011
).
64.
P.
Saeidi
,
S.
Yalameha
, and
Z.
Nourbakhsh
, “
The investigation of structural, electronic, elastic and thermodynamic properties of Gd1− xYxAuPb alloys: A first principle study
,”
Phys. Lett. A
383
(
2–3
),
221
230
(
2019
).
65.
M. A.
Hadi
 et al, “
First-principles prediction of mechanical and bonding characteristics of new T2 superconductor Ta5GeB2
,”
Phys. Status Solidi (b)
253
(
10
),
2020
2026
(
2016
).
66.
I.
Yonenaga
, “
Hardness, yield strength, and dislocation velocity in elemental and compound semiconductors
,”
Mater. Trans.
46
(
9
),
1979
1985
(
2005
).
67.
J.
Yang
,
L.
Yang
, and
J.
Long
, “
Theoretical investigation of the electronic structure, optical, elastic, hardness and thermodynamics properties of jadeite
,”
Mater. Sci. Semicond. Process.
31
,
509
516
(
2015
).
68.
Y.
Tian
,
B.
Xu
, and
Z.
Zhao
, “
Microscopic theory of hardness and design of novel superhard crystals
,”
Int. J. Refract. Met. H.
33
,
93
106
(
2012
).
69.
J.
Chabot
,
M.
Côté
, and
J.-F.
Briere
, “Ab initio study of the electronic and structural properties of CsSnI3 perovskite,” Comptes Rendus Du 17ième Symposium Annuel International Sur Les Systèmes Et Applications Du Calcul de Haute Performance Et Le Symposium OSCAR (NRC Research Press, 2003).
70.
Y.
Ye
 et al, “
Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): First-principles calculations
,”
Chin. Phys. B
24
(
11
),
116302
(
2015
).
71.
M.
Roknuzzaman
 et al, “
Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations
,”
Sci. Rep.
7
(
1
),
14025
(
2017
).
72.
Y.
Huang
 et al, “
Pressure-induced band structure evolution of halide perovskites: A first-principles atomic and electronic structure study
,”
J. Phys. Chem. C
123
(
1
),
739
745
(
2019
).
73.
L.
Kong
 et al, “
Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
32
),
8910
8915
(
2016
).
74.
S.
Yalameha
,
Z.
Nourbakhsh
, and
A.
Vaez
, “
Hydrostatic strain-induced topological phase of KNa2Sb
,”
J. Magn. Magn. Mater.
468
,
279
286
(
2018
).
75.
M.
Narimani
,
S.
Yalameha
, and
Z.
Nourbakhsh
, “
The effect of pressure and spin orbit interaction on topological phase and phonon dispersion of LuX (X=Sb, Bi) compounds
,”
J. Alloys Compd.
768
,
433
440
(
2018
).
76.
M.
Kim
 et al, “
Topological quantum phase transitions driven by external electric fields in Sb2Te3 thin films
,”
Proc. Natl. Acad. Sci. U.S.A.
109
(
3
),
671
674
(
2012
).
77.
A. A.
Soluyanov
and
D.
Vanderbilt
, “
Computing topological invariants without inversion symmetry
,”
Phys. Rev. B
83
(
23
),
235401
(
2011
).
78.
Y. J.
Wang
 et al, “
Nontrivial spin texture of the coaxial Dirac cones on the surface of topological crystalline insulator SnTe
,”
Phys. Rev. B
87
(
23
),
235317
(
2013
).
79.
A. S.
Verma
,
A.
Kumar
, and
S. R.
Bhardwaj
, “
Correlation between ionic charge and the lattice constant of cubic perovskite solids
,”
Phys. Status Solidi (b)
245
(
8
),
1520
1526
(
2008
).
You do not currently have access to this content.