Transmissions of dislocations across grown-in twin boundaries, i.e., Σ3 {111} boundaries, in multicrystalline silicon (mc-Si) were investigated by direct observations using the etch-pit technique and x-ray topography. Dislocations were freshly generated from a scratch by three-point bending at 800 °C. The generated screw dislocations whose Burgers vector was parallel to the twin boundaries stopped their motion at the boundaries and piled up there. This result reveals that the resistance stress of twin boundaries against screw dislocations is greater than ∼18 MPa. Alternatively, nonscrew-type dislocations were generated from the twin boundaries into the adjacent twinned grain under the stress greater than ∼15 MPa. The results are discussed in terms of cross-slip of dissociated dislocations for transmission across the twin boundaries and stress concentration by piled-up dislocations in the interactions of dislocations with grain boundaries developed in metals.

1.
Y.
Ohno
,
K.
Inoue
,
Y.
Tokumoto
,
K.
Kutsukake
,
I.
Yonenaga
,
N.
Ebisawa
,
H.
Takamizawa
,
Y.
Shimizu
,
K.
Inoue
,
Y.
Nagai
,
H.
Yoshida
, and
S.
Takeda
, “
Three-dimensional evaluation of gettering ability of (Σ3 {111} grain boundaries in silicon by atom probe tomography combined with transmission electron microscopy
,”
Appl. Phys. Lett.
103
,
102102
(
2013
).
2.
K.
Kutsukake
,
T.
Abe
,
N.
Usami
,
K.
Fujiwara
,
I.
Yonenaga
,
K.
Morishita
, and
K.
Nakajima
, “
Generation mechanism of dislocations and their clusters in multicrystalline silicon during two-dimensional growth
,”
J. Appl. Phys.
110
,
083530
(
2011
).
3.
I.
Takahashi
,
N.
Usami
,
K.
Kutsukake
,
G.
Stokkan
,
K.
Morishita
, and
K.
Nakajima
, “
Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed
,”
J. Cryst. Growth
312
,
897
901
(
2010
).
4.
M.
Trempa
,
C.
Reimann
,
J.
Friedrich
,
G.
Müller
,
A.
Krause
,
L.
Sylla
, and
T.
Richter
, “
Defect formation induced by seed-joints during directional solidification of quasi-mono-crystalline silicon ingots
,”
J. Cryst. Growth
405
,
131
141
(
2014
).
5.
F. V.
An
,
N. A.
Bulenkov
, and
A. V.
Andreeva
, “
Structure of a second-order twin boundary in silicon and its interaction with thermally generated lattice dislocations
,”
Phys. Stat. Sol. A
88
,
429
441
(
1985
).
6.
M.
Omri
,
J.-P.
Michel
,
C.
Tete
, and
A.
George
, “Mechanical behavior of polycrystals and single crystals of silicon,” in Proceedings of the 7th International Conference on Strength of Metals and Alloys (Pergamon Press, 1985), pp. 75–80.
7.
X.
Baillin
,
J.
Pelissier
,
J.
Bacmann
,
A.
Jacques
, and
A.
George
, “
Dislocation transmission through Σ9 symmetrical tilt boundaries in silicon and germanium: I. In situ observations by synchrotron x-ray topography and high-voltage electron microscopy
,”
Philos. Mag. A
55
,
143
164
(
1987
).
8.
M.
Martinez-Hernandez
,
H. O. K.
Kirchner
,
A.
Korner
,
A.
George
, and
J. P.
Michel
, “
Dislocations at grain boundaries in deformed silicon
,”
Philos. Mag. A
56
,
641
658
(
1987
).
9.
A.
George
,
A.
Jacques
,
X.
Baillin
,
J.
Thibault-Desseaux
, and
J. L.
Putaux
, “
Plastic deformation of Si and Ge bicrystals
,”
Inst. Phys. Conf. Ser.
104
,
349
360
(
1989
).
10.
J. P.
Hirth
and
R. W.
Balluffi
, “
On grain boundary dislocations and ledges
,”
Acta Met.
21
,
929
942
(
1973
).
11.
Z.
Shen
,
R. H.
Wagoner
, and
W. A. T.
Clark
, “
Disloctaion and grain boundary interactions in metals
,”
Acta. Mater.
36
,
3231
3242
(
1988
).
12.
T. C.
Lee
,
I. M.
Robertson
, and
H. K.
Birnbaum
, “
TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals
,”
Philos. Mag. A
62
,
131
153
(
1990
).
13.
R. G.
Hoagland
,
R. J.
Kurtz
, and
C. H.
Henager
, Jr
, “
Slip resistance of interfaces and the strength of metallic multilayer composites
,”
Scripta Mater.
50
,
775
779
(
2004
).
14.
Y.
Cheng
,
M.
Mrovec
, and
P.
Gumbsch
, “
Atomistic simulations of interactions between the 1/2 〈111〉 edge dislocation and symmetric tilt grain boundaries in tungsten
,”
Philos. Mag.
88
,
547
560
(
2008
).
15.
M. D.
Sangid
,
T.
Ezaz
,
H.
Sehitoglu
, and
I. M.
Robertson
, “
Energy of slip transmission and nucleation at grain boundaries
,”
Acta Mater.
59
,
283
296
(
2011
).
16.
J.
Chen
and
T.
Sekiguchi
, “
Carrier recombination activity and structural properties of small-angle grain boundaries in multicrystalline silicon
,”
Jpn. J. Appl. Phys.
46
,
6489
6497
(
2007
).
17.
J.
Chen
,
B.
Chen
,
T.
Sekiguchi
,
M.
Fukuzawa
, and
M.
Yamada
, “
Correlation between residual strain and electrically active grain boundaries in multicrystalline silicon
,”
Appl. Phys. Lett.
93
,
112105
(
2008
).
18.
M.
Kohyama
,
R.
Yamamoto
, and
M.
Doyama
, “
Reconstructed structures of symmetrical 〈110〉 tilt grain boundaries in silicon
,”
Phys. Stat. Sol. B
138
,
387
397
(
1986
).
19.
M.
Sato
and
K.
Sumino
, “
Motion of extended dislocations in silicon crystals observed by HVEM
,”
Phys. Stat. Sol. A
55
,
297
306
(
1979
).
20.
M.
Sato
and
K.
Sumino
, “
In-situ observations on dynamic processes associated with stacking faults and deformation twins in silicon crystal
,”
Krist. Tech.
14
,
1351
1355
(
1979
).
21.
M. M.
Kivambe
,
T.
Ervik
,
B.
Ryningen
, and
G.
Stokkan
, “
On the role of stacking faults on dislocation generation and dislocation cluster formation in multicrystalline silicon
,”
J. Appl. Phys.
112
,
103528
(
2012
).
22.
A.
Gemperle
,
N.
Zárubová
, and
J.
Gemperlová
, “
Reactions of slip dislocations with twin boundary in Fe-Si bicrystals
,”
J. Mater. Sci.
40
,
3247
3254
(
2005
).
23.
Z.-H.
Jin
,
P.
Gumbsch
,
E.
Ma
,
K.
Albe
,
K.
Lu
,
H.
Hahn
, and
H.
Gleiter
, “
The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals
,”
Scripta Mater.
54
,
1163
1168
(
2006
).
24.
Z.-H.
Jin
,
P.
Gumbsch
,
K.
Albe
,
E.
Ma
,
K.
Lu
,
H.
Gleiter
, and
H.
Hahn
, “
Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals
,”
Acta Mater.
56
,
1126
1135
(
2008
).
25.
Y. B.
Wang
and
M. L.
Sui
, “
Atomic-scale in situ observation of lattice dislocations passing through twin boundaries
,”
Appl. Phys. Lett.
94
,
021909
(
2009
).
26.
Y. T.
Zhu
,
X. L.
Wu
,
X. Z.
Liao
,
J.
Narayan
,
L. J.
Kecskés
, and
S. N.
Mathaudhu
, “
Dislocation–twin interactions in nanocrystalline fcc metals
,”
Acta Mater.
59
,
812
821
(
2011
).
27.
M. G.
Tsoutsouva
,
T.
Riberi-Béridot
,
G.
Regula
,
G.
Reinhart
,
J.
Baruchel
,
F.
Guittonneau
,
L.
Barrallier
, and
N.
Mangelinck-Noël
, “
In situ investigation of the structural defect generation and revolution during the directional solidification of 〈110〉 seeded growth Si
,”
Acta Mater.
115
,
210
223
(
2016
).
28.
X.
Chen
,
L.
Xiong
,
A.
Chernatynskiy
, and
Y.
Chen
, “
A molecular dynamics study of tilt grain boundary resistance to slip and heat transfer in nanocrystalline silicon
,”
J. Appl. Phys.
116
,
244309
(
2014
).
29.
I.
Yonenaga
, “
Growth and mechanical properties of GeSi bulk crystals
,”
J. Mater. Sci. Mater. Electron.
10
,
329
333
(
1999
).
30.
E.
Sirtl
and
A.
Adler
, “
Chromsäure-Flusssäure als spezifisches System zur Ätzgrubenentwicklung auf Silizium
,”
Z. Metallkd.
52
,
529
531
(
1961
).
31.
I.
Yonenaga
,
T.
Taishi
,
X.
Huang
, and
K.
Hoshikawa
, “
Dynamic characteristics of dislocations in highly boron-doped silicon
,”
J. Appl. Phys.
89
,
5788
5790
(
2001
).
32.
I.
Yonenaga
,
K.
Sumino
, and
K.
Hoshi
, “
Mechanical strength of silicon crystals as a function of the oxygen concentration
,”
J. Appl. Phys.
56
,
2346
2350
(
1984
).
33.
I.
Yonenaga
and
K.
Sumino
, “
Role of carbon in the strengthening of silicon crystals
,”
Jpn. J. Appl. Phys.
23
,
L590
592
(
1984
).
34.
H.
Chen
,
L.
Valery
, and
L.
Xiong
, “
Slip of shuffle screw dislocations through tilt grain boundaries in silicon
,”
Comput. Mater. Sci.
157
,
132
135
(
2019
).
35.
I.
Yonenaga
, “
An overview of plasticity of Si crystals governed by dislocation motion
,”
Eng. Fract. Mech.
147
,
468
479
(
2015
).
36.
I.
Yonenaga
, “
Atomic structures and dynamic properties of dislocations in semiconductors: Current progress and stagnation
,”
Semicond. Sci. Technol.
(in press) (2020).
37.
I.
Yonenaga
and
T.
Suzuki
, “
Cross-slip in GaAs and InP at elevated temperatures
,”
Philos. Mag. Lett.
80
,
511
518
(
2000
).
38.
K.
Kutsukake
,
N.
Usami
,
Y.
Ohno
,
Y.
Tokumoto
, and
I.
Yonenaga
, “
Control of grain boundary propagation in mono-like Si: Utilization of functional grain boundaries
,”
Appl. Phys. Express
6
,
025505
(
2013
).
You do not currently have access to this content.