Cooling with caloric materials could be an option to replace compressor-based cooling systems in the future. In addition to the advantage of avoiding dangerous liquid coolants, one often cites a possible higher efficiency of the calorific cooling systems compared to compressor-based systems. But is that true? The aim of this work is to assess the efficiency potential of caloric cooling systems on a very basic material level. We placed our focus on materials with a first-order phase change since they generally show a large caloric response. We derive a relation between thermal hysteresis and the dissipative losses due to hysteresis. To predict the efficiency, this relation is integrated in a Carnot-like cycle. This approach was chosen to get access to the efficiency reduction due to hysteresis without any further losses due to other nonidealities of the thermodynamic cycle. As a main finding, we present a direct relation between thermal hysteresis and the expected maximum exergy or second-law efficiency of a caloric cooling device. These results indicate that, for many caloric materials, the thermal hysteresis needs to be further reduced to be able to compete with the efficiency of compressor-based systems.

1.
K. A.
Gschneidner
and
V. K.
Pecharsky
,
Int. J. Refrig.
31
,
945
(
2008
).
2.
Camfridge, Efficiency up to 40% better than compressor. “It is in smaller appliances where conventional gas based cooling technology is less efficient (rather than large industrial scale plants) and it is here that Camfridge's technology demonstrates up to a 40% reduction in energy consumption,” see http://www.camfridge.com.
3.
Magnotherm Solutions GmbH, Efficiency up to 40% better than compressor. “Our technology has the capability to be up to 40% more efficient than conventional gas compression cooling and heating solutions,” see https://www.magnotherm-solutions.com.
4.
M. O.
McLinden
,
J. S.
Brown
,
R.
Brignoli
,
A. F.
Kazakov
, and
P. A.
Domanski
,
Nat. Commun.
8
,
14476
(
2017
).
5.
J. A.
Lozano
,
K.
Engelbrecht
,
C. R. H.
Bahl
,
K. K.
Nielsen
,
J. R.
Barbosa
,
A. T.
Prata
, and
N.
Pryds
,
Int. J. Refrig.
37
,
92
(
2014
).
6.
K.
Engelbrecht
,
J.
Tušek
,
D.
Eriksen
,
T.
Lei
,
C.-Y.
Lee
,
J.
Tušek
, and
N.
Pryds
,
J. Phys. D Appl. Phys.
50
,
424006
(
2017
).
7.
T.
Zhang
,
X.-S.
Qian
,
H.
Gu
,
Y.
Hou
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
110
,
243503
(
2017
).
8.
J. S.
Brown
and
P. A.
Domanski
,
Appl. Therm. Eng.
64
,
252
(
2014
).
9.
J.
Tušek
,
K.
Engelbrecht
,
L.
Mañosa
,
E.
Vives
, and
N.
Pryds
,
Shape Memory Superelasticity
2
,
317
(
2016
).
10.
E.
Palacios
,
G. F.
Wang
,
R.
Burriel
,
V.
Provenzano
, and
R. D.
Shull
,
J. Phys. Conf. Ser.
200
,
92011
(
2010
).
11.
L. D.
Griffith
,
Y.
Mudryk
,
J.
Slaughter
, and
V. K.
Pecharsky
,
J. Appl. Phys.
123
,
034902
(
2018
).
12.
X.
Moya
,
E.
Defay
,
V.
Heine
, and
N. D.
Mathur
,
Nat. Phys.
11
,
202
(
2015
).
13.
S.
Qian
,
D.
Nasuta
,
A.
Rhoads
,
Y.
Wang
,
Y.
Geng
,
Y.
Hwang
,
R.
Radermacher
, and
I.
Takeuchi
,
Int. J. Refrig.
62
,
177
(
2016
).
14.
T.
Hess
,
C.
Vogel
,
L. M.
Maier
,
A.
Barcza
,
H. P.
Vieyra
,
O.
Schäfer-Welsen
,
J.
Wöllenstein
, and
K.
Bartholomé
,
Int. J. Refrig.
109
,
128
(
2020
).
15.
V.
Basso
, Basics of the Magnetocaloric Effect, preprint arXiv:1702.08347.
16.
K. P.
Skokov
,
K.-H.
Müller
,
J. D.
Moore
,
J.
Liu
,
A. Y.
Karpenkov
,
M.
Krautz
, and
O.
Gutfleisch
,
J. Alloys Compd.
552
,
310
(
2013
).
17.
B.
Kaeswurm
,
V.
Franco
,
K. P.
Skokov
, and
O.
Gutfleisch
,
J. Magn. Magn. Mater.
406
,
259
(
2016
).
18.
L.
von Moos
, “
Hysteresis in magnetocaloric materials. An experimental and modelling approach
,”
Ph.D. thesis
(
Technical University of Denmark
,
2014
).
19.
K. P.
Skokov
,
V. V.
Khovaylo
,
K.-H.
Müller
,
J. D.
Moore
,
J.
Liu
, and
O.
Gutfleisch
,
J. Appl. Phys.
111
,
07A910
(
2012
).
20.
T.
Hess
,
L. M.
Maier
,
P.
Corhan
,
O.
Schäfer-Welsen
,
J.
Wöllenstein
, and
K.
Bartholomé
,
Int. J. Refrig.
103
,
215
(
2019
).
21.
V.
Basso
,
M.
Küpferling
,
C.
Curcio
,
C.
Bennati
,
A.
Barzca
,
M.
Katter
,
M.
Bratko
,
E.
Lovell
,
J.
Turcaud
, and
L. F.
Cohen
,
J. Appl. Phys.
118
,
053907
(
2015
).
22.
P. A.
Domanski
,
J. S.
Brown
,
J.
Heo
,
J.
Wojtusiak
, and
M. O.
McLinden
,
Int. J. Refrig.
38
,
71
(
2014
).
23.
H.
Gu
,
L.
Bumke
,
C.
Chluba
,
E.
Quandt
, and
R. D.
James
,
Mater. Today
21
,
265
(
2018
).
24.
D.
Cong
,
W.
Xiong
,
A.
Planes
,
Y.
Ren
,
L.
Mañosa
,
P.
Cao
,
Z.
Nie
,
X.
Sun
,
Z.
Yang
,
X.
Hong
, and
Y.
Wang
,
Phys. Rev. Lett.
122
,
33
(
2019
).
You do not currently have access to this content.