Self-assembly behavior of polymer grafted nanoparticles in ordered phases of geometrically confined diblock copolymers is studied using self-consistent field theory. Entropy loss and structural frustration introduced by physical confinement significantly alter the morphology of ordered phases from the bulk behavior. In particular, a rich variety of three-dimensional microstructures, for example, helical structures, are obtained under confinement. In the present study, we demonstrate that ordered microstructures of diblock copolymers can be employed as promising structural scaffolds to host and self-assemble nanoparticles within the selective domain. Templated self-assembly of nanoparticles offers a potential route to fabricate advanced nanomaterials with superior properties. Analysis reveals various stable equilibrium phases of block copolymers embedded with nanoparticles with a high degree of nanoscale ordering. The arrangement of nanoparticles is controlled by tuning various parameters such as block fraction in diblock copolymers, particle loading, size and number of grafted chains, and degree of confinement. At a low volume fraction, nanoparticles self-organize into chiral microstructures, such as single and double helices, even though the system contains only achiral species. Upon enhancing particle loading, the helical structure becomes less favorable and various other three-dimensional phases such as ring and disk morphologies are obtained. The regions of helical, ring, disk, and concentric lamellar phases are identified in terms of parameters related to grafted particles. Understanding the factors affecting localization of nanoparticles enables us to control the particulate self-assembly behavior of nanoparticles to design novel and advanced nanocomposites with desirable properties.

1.
F. S.
Bates
and
G. H.
Fredrickson
, “
Block copolymer thermodynamics—Theory and experiment
,”
Annu. Rev. Phys. Chem.
41
,
525
557
(
1990
).
2.
M. W.
Matsen
, “
Stable and unstable phases of a diblock copolymer melt
,”
Phys. Rev. Lett.
72
,
2660
2663
(
1994
).
3.
M.
Park
,
C.
Harrison
,
P. M.
Chaikin
,
R. A.
Register
, and
D. H.
Adamson
, “
Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter
,”
Science
276
(
5317
),
1401
1404
(
1997
).
4.
A. C.
Balazs
,
T.
Emrick
, and
T. P.
Russell
, “
Nanoparticle polymer composites: Where two small worlds meet
,”
Science
314
,
1107
1110
(
2006
).
5.
J.
Huh
,
V. V.
Ginzburg
, and
A. C.
Balazs
, “
Thermodynamic behavior of particle/diblock copolymer mixtures: Simulation and theory
,”
Macromolecules
33
,
8085
8096
(
2000
).
6.
R. B.
Thompson
,
V. V.
Ginzburg
,
M. W.
Matsen
, and
A.
Balazs
, “
Block copolymer-directed assembly of nanoparticles: Forming mesoscopically ordered hybrid materials
,”
Macromolecules
35
,
1060
1071
(
2002
).
7.
V. V.
Ginzburg
, “
Polymer grafted nanoparticles in polymer melts: Modeling using the combined SCFT-DFT approach
,”
Macromolecules
46
,
9798
9805
(
2013
).
8.
S.
Förster
and
T.
Plantenberg
, “
From self-organizing polymers to nanohybrid and biomaterials
,”
Angew. Chem. Int. Ed.
41
,
688
714
(
2002
).
9.
B. J.
Kim
,
G. H.
Fredrickson
,
C. J.
Hawker
, and
E. J.
Kramer
, “
Nanoparticle surfactants as a route to bicontinuous block copolymer morphologies
,”
Langmuir
23
,
7804
7809
(
2007
).
10.
M. J.
Birnkrant
,
C. Y.
Li
,
L. V.
Natarajan
,
V. P.
Tondiglia
,
R. L.
Sutherland
,
P. F.
Lloyd
, and
T. J.
Bunning
, “
Layer-in-layer hierarchical nanostructures fabricated by combining holographic polymerization and block copolymer self-assembly
,”
Nano Lett.
7
,
3128
3133
(
2007
).
11.
R.
Vaia
and
J.
Baur
, “
Adaptive composites
,”
Science
319
,
420
421
(
2008
).
12.
C.
Park
,
J.
Yoon
, and
E. L.
Thomas
, “
Enabling nanotechnology with self assembled block copolymer patterns
,”
Polymer
44
(
22
),
6725
6760
(
2003
).
13.
A. T.
Thurn
,
J.
Schotter
,
G. A.
Kästle
,
N.
Emley
,
T.
Shibauchi
,
E. L.
Krusin
,
K.
Guarini
,
C. T.
Black
,
M. T.
Tuominen
, and
T. P.
Russell
, “
Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates
,”
Science
290
,
2126
2129
(
2000
).
14.
K. M.
Coakley
and
M. D.
McGehee
, “
Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania
,”
Appl. Phys. Lett.
83
(
16
),
3380
3382
(
2003
).
15.
G.-K.
Xu
,
X.-Q.
Feng
,
B.
Li
, and
H.
Gao
, “
Controlled release and assembly of drug nanoparticles via pH-responsive polymeric micelles: A theoretical study
,”
J. Phys. Chem. B
116
(
20
),
6003
6009
(
2012
).
16.
G. K.
Xu
,
W.
Lu
,
X. Q.
Feng
, and
S. W.
Yu
, “
Self-assembly of organic–inorganic nanocomposites with nacre-like hierarchical structures
,”
Soft Matter
7
,
4828
4832
(
2011
).
17.
C.
Bahr
and
H.-S.
Kitzerow
,
Chirality in Liquid Crystals
(
Springer
,
2001
).
18.
Y.
Wu
,
G.
Cheng
,
K.
Katsov
,
S. W.
Sides
,
J.
Wang
,
J.
Tang
,
G. H.
Fredrickson
,
M.
Moskovits
, and
G. D.
Stucky
, “
Composite mesostructures by nano-confinement
,”
Nat. Mater.
3
(
11
),
816
(
2004
).
19.
H.
Xiang
,
K.
Shin
,
T.
Kim
,
S. I.
Moon
,
T. J.
McCarthy
, and
T. P.
Russell
, “
From cylinders to helices upon confinement
,”
Macromolecules
38
(
4
),
1055
1056
(
2005
).
20.
L.
Yao
,
X.
Lu
,
S.
Chen
, and
J. J.
Watkins
, “
Formation of helical phases in achiral block copolymers by simple addition of small chiral additives
,”
Macromolecules
47
(
19
),
6547
6553
(
2014
).
21.
R. M.
Ho
,
Y. W.
Chiang
,
C. C.
Tsai
,
C. C.
Lin
,
B. T.
Ko
, and
B. H.
Huang
, “
Three-dimensionally packed nanohelical phase in chiral block copolymers
,”
J. Am. Chem. Soc.
126
(
9
),
2704
2705
(
2004
).
22.
R. M.
Ho
,
Y. W.
Chiang
,
C. K.
Chen
,
H. W.
Wang
,
H.
Hasegawa
,
S.
Akasaka
,
E. L.
Thomas
,
C.
Burger
, and
B. S.
Hsiao
, “
Block copolymers with a twist
,”
J. Am. Chem. Soc.
131
(
51
),
18533
18542
(
2009
).
23.
P.
Lambooy
,
T. P.
Russell
,
G. J.
Kellogg
,
A. M.
Mayes
,
P. D.
Gallagher
, and
S. K.
Satija
, “
Observed frustration in confined block copolymers
,”
Phys. Rev. Lett.
72
(
18
),
2899
(
1994
).
24.
S.
Zhu
,
Y.
Liu
,
M. H.
Rafailovich
,
J.
Sokolov
,
D.
Gersappe
,
D. A.
Winesett
, and
A.
Ade
, “
Confinement-induced miscibility in polymer blends
,”
Nature
400
(
22
),
49
51
(
1999
).
25.
H.
Xiang
,
K.
Shin
,
T.
Kim
,
S. I.
Moon
,
T. J.
McCarthy
, and
T. P.
Russell
, “
Block copolymers under cylindrical confinement
,”
Macromolecules
37
(
15
),
5660
5664
(
2004
).
26.
K.
Shin
,
H.
Xiang
,
S. I.
Moon
,
T.
Kim
,
T. J.
McCarthy
, and
T. P.
Russell
, “
Curving and frustrating flatland
,”
Science
306
(
5693
),
76
76
(
2004
).
27.
P.
Dobriyal
,
H.
Xiang
,
M.
Kazuyuki
,
J. T.
Chen
,
H.
Jinnai
, and
T. P.
Russell
, “
Cylindrically confined diblock copolymers
,”
Macromolecules
42
(
22
),
9082
9088
(
2009
).
28.
W.
Li
,
R. A.
Wickham
, and
R. A.
Garbary
, “
Phase diagram for a diblock copolymer melt under cylindrical confinement
,”
Macromolecules
39
(
2
),
806
811
(
2006
).
29.
M.
Liu
,
W.
Li
, and
X.
Wang
, “
Order-order transitions of diblock copolymer melts under cylindrical confinement
,”
J. Chem. Phys.
147
(
11
),
114903
(
2017
).
30.
B.
Yu
,
P.
Sun
,
T.
Chen
,
Q.
Jin
,
D.
Ding
,
B.
Li
, and
C.
Shi
, “
Confinement-induced novel morphologies of block copolymers
,”
Phys. Rev. Lett.
96
(
13
),
138306
(
2006
).
31.
H.
Xiang
,
K.
Shin
,
T.
Kim
,
S.
Moon
,
T. J.
McCarthy
, and
T. P.
Russell
, “
The influence of confinement and curvature on the morphology of block copolymers
,”
J. Polym. Sci. B Polym. Phys.
43
(
23
),
3377
3383
(
2005
).
32.
A. C.
Shi
and
B.
Li
, “
Self-assembly of diblock copolymers under confinement
,”
Soft Matter
9
,
1398
(
2013
).
33.
G. K.
Xu
,
X. Q.
Feng
, and
S. W.
Yu
, “
Controllable nanostructural transitions in grafted nanoparticle-block copolymer composites
,”
Nano Res.
3
,
356
362
(
2010
).
34.
G. K.
Xu
and
X. Q.
Feng
, “
Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites
,”
Polym. Lett.
5
,
374
383
(
2011
).
35.
S.
Gupta
and
P.
Chokshi
, “
Interaction potential between polymer grafted nanosheets in an architecturally dissimilar polymer matrix
,”
Chem. Eng. Sci.
209
,
115184
(
2019
).
36.
S.
Gupta
and
P.
Chokshi
, “
Self-assembly of grafted nanoparticles in lamellar mesophase of symmetric triblock copolymer
,”
Soft Matter
15
,
7623
7634
(
2019
).
37.
S. K.
Kumar
,
V.
Ganesan
, and
R. A.
Riggleman
, “
Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids
,”
J. Chem. Phys.
147
(
2
),
020901
(
2017
).
38.
J.
Koski
,
H.
Chao
, and
R. A.
Riggleman
, “
Field theoretic simulations of polymer nanocomposites
,”
J. Chem. Phys.
139
(
24
),
244911
(
2013
).
39.
B. J.
Lindsay
,
R. J.
Composto
, and
R. A.
Riggleman
, “
Equilibrium field theoretic study of nanoparticle interactions in diblock copolymer melts
,”
J. Phys. Chem. B
123
,
9466
9480
(
2019
).
40.
Q.
Zhang
,
J.
Gu
,
L.
Zhang
, and
J.
Lin
, “
Diverse chiral assemblies of nanoparticles directed by achiral block copolymers via nanochannel confinement
,”
Nanoscale
11
(
2
),
474
484
(
2019
).
41.
E.
Reister
and
G. H.
Fredrickson
, “
Phase behavior of a blend of polymer-tethered nanoparticles with diblock copolymers
.
J. Chem. Phys.
123
,
214903
(
2005
).
42.
R. J.
Spontak
,
R.
Shankar
,
M. K.
Bowman
,
A. S.
Krishnan
,
M. W.
Hamersky
,
J.
Samseth
,
M. R.
Bockstaller
, and
K. Ø
Rasmussen
, “
Selectivity and size-induced segregation of molecular and nanoscale species in microphase-ordered triblock copolymers
,”
Nano Lett.
6
,
2115
2120
(
2006
).
43.
S.
Li
,
W.
Qiu
,
L.
Zhang
, and
H.
Liang
, “
Nanostructures and phase diagrams of ABC star triblock copolymers in pore geometries
,”
J. Chem. Phys.
136
(
12
),
124906
(
2012
).
44.
M. W.
Matsen
, “
Stabilizing new morphologies by blending homopolymer with block copolymer
,”
Phys. Rev. Lett.
74
,
4225
(
1995
).
45.
M. W.
Matsen
, “
The standard Gaussian model for block copolymer melts
,”
J. Phys. Condens. Matter
14
(
2
),
R21
(
2001
).
46.
T.
Tzeremes
,
K. O.
Rasmussen
,
T.
Loohman
, and
A.
Saxena
, “
Efficient computation of the structural phase behavior of block copolymers
,”
Phys. Rev. E
65
,
041806
(
2002
).
47.
K.
Ø. Rasmussen
and
G.
Kalosakas
, “
Improved numerical algorithm for exploring block copolymer mesophases
,”
J. Polym. Sci. B
40
,
1777
1783
(
2002
).
48.
F.
Drolet
and
G. H.
Fredrickson
, “
Combinatorial screening of complex block copolymer assembly with self-consistent field theory
,”
Phys. Rev. Lett.
83
,
4317
(
1999
).
49.
W. H.
Li
and
R. A.
Wickham
, “
Self-assembled morphologies of a diblock copolymer melt confined in a cylindrical nanopore
,”
Macromolecules
39
,
8492
8498
(
2006
).
50.
W. H.
Li
and
R. A.
Wickham
, “
Influence of the surface field on the self-assembly of a diblock copolymer melt confined in a cylindrical nanopore
,”
Macromolecules
42
,
7530
7536
(
2009
).
51.
S. M.
Hur
,
C. C. J.
Garcia
,
E. J.
Kramer
, and
G. H.
Fredrickson
, “
SCFT simulations of thin film blends of block copolymer and homopolymer laterally confined in a square well
,”
Macromolecules
42
(
15
),
5861
5872
(
2009
).
52.
N.
Laachi
,
K. T.
Delaney
,
B.
Kim
,
S.-M.
Hur
,
R.
Bristol
,
D.
Shykind
,
C.
Weinheimer
, and
G. H.
Fredrickson
, “
Self-consistent field theory investigation of directed self-assembly in cylindrical confinement
,”
J. Polym. Sci. Part B Polym. Phys.
53
,
142
153
(
2015
).
You do not currently have access to this content.