We have succeeded in controlling the line shape of Fano-like resonances in all-dielectric multilayer structures in a wide range by UV light irradiation. Multilayer structures consisting of a waveguide layer supporting a half-leaky guided mode, a spacer layer, and another waveguide layer supporting a planar waveguide mode are known to exhibit Fano-like line shapes in attenuated total reflection spectra due to coupling between the half-leaky guided mode and the planar waveguide mode. Using a photochromic layer, i.e., a layer doped with spiropyran molecules, as one of the waveguide layers, we controlled the amount of light absorption in the waveguide layer by varying the UV irradiation dose. We demonstrated that the line shape changes dramatically depending on the UV dose, from the electromagnetically induced transparency-like to electromagnetically induced absorption-like line shape (or vice versa) passing through the Fano-like line shape. We also demonstrated that the photochromic response induced by UV irradiation in the Fano-resonant multilayer structure is enhanced by a factor of ∼100 relative to that in a single photochromic layer. Our analyses based on electromagnetic calculations suggest that the dramatic line shape change and the enhanced photochromic response are the consequences of enhanced local electric fields inside the photochromic waveguide layer combined with the photoinduced increase in the imaginary part of the dielectric constant.

1.
U.
Fano
,
Il Nuovo Cim.
12
,
154
(
1935
).
3.
K.-J.
Boller
,
A.
Imamoğlu
, and
S. E.
Harris
,
Phys. Rev. Lett.
66
,
2593
(
1991
).
4.
S. E.
Harris
,
Phys. Today
50
(
7
),
36
(
1997
).
5.
M.
Fleischhauer
,
A.
Imamoglu
, and
J. P.
Marangos
,
Rev. Mod. Phys.
77
,
633
(
2005
).
6.
A. M.
Akulshin
,
S.
Barreiro
, and
A.
Lezama
,
Phys. Rev. A
57
,
2996
(
1998
).
7.
A.
Lezama
,
S.
Barreiro
, and
A. M.
Akulshin
,
Phys. Rev. A
59
,
4732
(
1999
).
8.
A. V.
Taichenachev
,
A. M.
Tumaikin
, and
V. I.
Yudin
,
Phys. Rev. A
61
,
011802
(
1999
).
9.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
,
Rev. Mod. Phys.
82
,
2257
(
2010
).
10.
B.
Luk'yanchuk
,
N. I.
Zheludev
,
S. A.
Maier
,
N. J.
Halas
,
P.
Nordlander
,
H.
Giessen
, and
C. T.
Chong
,
Nat. Mater.
9
,
707
(
2010
).
11.
M. F.
Limonov
,
M. V.
Rybin
,
A. N.
Poddubny
, and
Y. S.
Kivshar
,
Nat. Photonics
11
,
543
(
2017
).
12.
Q.
Xu
,
S.
Sandhu
,
M. L.
Povinelli
,
J.
Shakya
,
S.
Fan
, and
M.
Lipson
,
Phys. Rev. Lett.
96
,
123901
(
2006
).
13.
S.
Zhang
,
D. A.
Genov
,
Y.
Wang
,
M.
Liu
, and
X.
Zhang
,
Phys. Rev. Lett.
101
,
047401
(
2008
).
14.
N.
Liu
,
L.
Langguth
,
T.
Weiss
,
J.
Kästel
,
M.
Fleischhauer
,
T.
Pfau
, and
H.
Giessen
,
Nat. Mater.
8
,
758
(
2009
).
15.
P.
Tassin
,
L.
Zhang
,
R.
Zhao
,
A.
Jain
,
T.
Koschny
, and
C. M.
Soukoulis
,
Phys. Rev. Lett.
109
,
187401
(
2012
).
16.
R.
Taubert
,
M.
Hentschel
,
J.
Kästel
, and
H.
Giessen
,
Nano Lett.
12
,
1367
(
2012
).
17.
R.
Taubert
,
M.
Hentschel
, and
H.
Giessen
,
J. Opt. Soc. Am. B
30
,
3123
(
2013
).
18.
F.
Hao
,
Y.
Sonnefraud
,
P.
Van Dorpe
,
S. A.
Maier
,
N. J.
Halas
, and
P.
Nordlander
,
Nano Lett.
8
,
3983
(
2008
).
19.
R.
Singh
,
W.
Cao
,
I.
Al-Naib
,
L.
Cong
,
W.
Withayachumnankul
, and
W.
Zhang
,
Appl. Phys. Lett.
105
,
171101
(
2014
).
20.
W. S.
Chang
,
J. B.
Lassiter
,
P.
Swanglap
,
H.
Sobhani
,
S.
Khatua
,
P.
Nordlander
,
N. J.
Halas
, and
S.
Link
,
Nano Lett.
12
,
4977
(
2012
).
21.
L.
Stern
,
M.
Grajower
, and
U.
Levy
,
Nat. Commun.
5
,
4865
(
2014
).
22.
Y.
Yang
,
W.
Wang
,
A.
Boulesbaa
,
I. I.
Kravchenko
,
D. P.
Briggs
,
A.
Puretzky
,
D.
Geohegan
, and
J.
Valentine
,
Nano Lett.
15
,
7388
(
2015
).
23.
J.
Ye
,
F.
Wen
,
H.
Sobhani
,
J. B.
Lassiter
,
P.
Van Dorpe
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
12
,
1660
(
2012
).
24.
A.
Nazir
,
S.
Panaro
,
R.
Proietti Zaccaria
,
C.
Liberale
,
F.
De Angelis
, and
A.
Toma
,
Nano Lett.
14
,
3166
(
2014
).
25.
B.
Lee
,
J.
Park
,
G. H.
Han
,
H. S.
Ee
,
C. H.
Naylor
,
W.
Liu
,
A. T. C.
Johnson
, and
R.
Agarwal
,
Nano Lett.
15
,
3646
(
2015
).
26.
X.
Zhang
,
S.
Choi
,
D.
Wang
,
C. H.
Naylor
,
A. T. C.
Johnson
, and
E.
Cubukcu
,
Nano Lett.
17
,
6715
(
2017
).
27.
W.
Wang
,
A.
Klots
,
Y.
Yang
,
W.
Li
,
I. I.
Kravchenko
,
D. P.
Briggs
,
K. I.
Bolotin
, and
J.
Valentine
,
Appl. Phys. Lett.
106
,
181104
(
2015
).
28.
Y.
Jung
,
I.
Hwang
,
J.
Yu
,
J.
Lee
,
J. H.
Choi
,
J. H.
Jeong
,
J. Y.
Jung
, and
J.
Lee
,
Sci. Rep.
9
,
7834
(
2019
).
29.
A. D.
Boardman
, in
Electromagnetic Surface Modes
(
John Wiley & Sons
,
Chichester
,
1982
).
30.
A.
Yariv
and
P.
Yeh
,
Optical Waves in Crystals Propagation and Control of Laser Radiation
(
Wiley
,
New York
,
2002
).
31.
H.
Grotewohl
and
M.
Deutsch
,
J. Opt.
17
,
085003
(
2015
).
32.
Y.
Neo
,
T.
Matsumoto
,
T.
Watanabe
,
M.
Tomita
, and
H.
Mimura
,
Opt. Express
24
,
26201
(
2016
).
33.
K.
Matsunaga
,
T.
Watanabe
,
Y.
Neo
,
T.
Matsumoto
, and
M.
Tomita
,
Opt. Lett.
41
,
5274
(
2016
).
34.
K.
Matsunaga
,
Y.
Hirai
,
Y.
Neo
,
T.
Matsumoto
, and
M.
Tomita
,
Sci. Rep.
7
,
17824
(
2017
).
35.
S.
Hayashi
,
D. V.
Nesterenko
, and
Z.
Sekkat
,
Appl. Phys. Express
8
,
022201
(
2015
).
36.
S.
Hayashi
,
D. V.
Nesterenko
, and
Z.
Sekkat
,
J. Phys. D. Appl. Phys.
48
,
325303
(
2015
).
37.
D. V.
Nesterenko
,
S.
Hayashi
, and
Z.
Sekkat
,
J. Opt.
18
,
065004
(
2016
).
38.
S.
Hayashi
,
D. V.
Nesterenko
,
A.
Rahmouni
, and
Z.
Sekkat
,
Appl. Phys. Lett.
108
,
051101
(
2016
).
39.
S.
Hayashi
,
Y.
Fujiwara
,
B.
Kang
,
M.
Fujii
,
D. V.
Nesterenko
, and
Z.
Sekkat
,
J. Appl. Phys.
122
,
163103
(
2017
).
40.
B.
Kang
,
M.
Fujii
,
D. V.
Nesterenko
,
Z.
Sekkat
, and
S.
Hayashi
,
J. Opt.
20
,
125003
(
2018
).
41.
S.
Hayashi
,
D. V.
Nesterenko
,
A.
Rahmouni
,
H.
Ishitobi
,
Y.
Inouye
,
S.
Kawata
, and
Z.
Sekkat
,
Sci. Rep.
6
,
33144
(
2016
).
42.
S.
Hayashi
,
D. V.
Nesterenko
,
A.
Rahmouni
, and
Z.
Sekkat
,
Phys. Rev. B
95
,
165402
(
2017
).
43.
S.
Hayashi
,
D. V.
Nesterenko
, and
Z.
Sekkat
, in
Fano Resonances in Optics and Microwaves
, edited by
E.
Kamenetskii
,
A.
Sadreev
, and
A.
Miroshnichenko
(
Springer
,
New York
,
2018
), pp.
241
260
.
44.
K.
Motokura
,
B.
Kang
,
M.
Fujii
,
D. V.
Nesterenko
,
Z.
Sekkat
, and
S.
Hayashi
,
J. Appl. Phys.
125
,
223101
(
2019
).
45.
N.
Jiang
,
X.
Zhuo
, and
J.
Wang
,
Chem. Rev.
118
,
3054
(
2018
).
46.
J.
Sautter
,
I.
Staude
,
M.
Decker
,
E.
Rusak
,
D. N.
Neshev
,
I.
Brener
, and
Y. S.
Kivshar
,
ACS Nano
9
,
4308
(
2015
).
47.
Y.
Cui
,
J.
Zhou
,
V. A.
Tamma
, and
W.
Park
,
ACS Nano
6
,
2385
(
2012
).
48.
N.
Dabidian
,
I.
Kholmanov
,
A. B.
Khanikaev
,
K.
Tatar
,
S.
Trendafilov
,
S. H.
Mousavi
,
C.
Magnuson
,
R. S.
Ruoff
, and
G.
Shvets
,
ACS Photonics
2
,
216
(
2015
).
49.
H. P.
Xin
,
F.
Liu
,
G. J.
Ren
,
H. L.
Zhao
, and
J. Q.
Yao
,
Opt. Commun.
389
,
92
(
2017
).
50.
F.
Chen
,
H.
Zhang
,
L.
Sun
,
J.
Li
, and
C.
Yu
,
Optik
185
,
585
(
2019
).
51.
A.
Li
and
W.
Bogaerts
,
Opt. Express
25
,
31688
(
2017
).
52.
F.
Chen
,
H.
Zhang
,
L.
Sun
,
J.
Li
, and
C.
Yu
,
Opt. Laser Technol.
116
,
293
(
2019
).
53.
Y.
Huang
,
J.
Yan
,
C.
Ma
, and
G.
Yang
,
Nanoscale Horiz.
4
,
148
(
2019
).
54.
R.
Yu
,
C.
Ding
,
D.
Zhang
, and
S.
Zhang
,
J. Appl. Phys.
121
,
144303
(
2017
).
55.
R.
Yahiaoui
,
M.
Manjappa
,
Y. K.
Srivastava
, and
R.
Singh
,
Appl. Phys. Lett.
111
,
021101
(
2017
).
56.
X.
Zhang
,
N.
Biekert
,
S.
Choi
,
C. H.
Naylor
,
C.
De-Eknamkul
,
W.
Huang
,
X.
Zhang
,
X.
Zheng
,
D.
Wang
,
A. T. C.
Johnson
, and
E.
Cubukcu
,
Nano Lett.
18
,
957
(
2018
).
57.
T.
Schwartz
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
,
Phys. Rev. Lett.
106
,
196405
(
2011
).
58.
A. L.
Baudrion
,
A.
Perron
,
A.
Veltri
,
A.
Bouhelier
,
P. M.
Adam
, and
R.
Bachelot
,
Nano Lett.
13
,
282
(
2013
).
59.
W. M.
Wilson
,
J. W.
Stewart
, and
M. H.
Mikkelsen
,
Nano Lett.
18
,
853
(
2018
).
60.
F.
Yang
and
J. R.
Sambles
,
J. Opt. Soc. Am. B
10
,
858
(
1993
).
61.
N. J.
Smith
and
J. R.
Sambles
,
J. Appl. Phys.
85
,
3984
(
1999
).
62.
N. W.
Tyer
and
R. S.
Becker
,
J. Am. Chem. Soc.
92
,
1289
(
1970
).
63.
S. A.
Krysanov
and
M. V.
Alfimov
,
Chem. Phys. Lett.
91
,
77
(
1982
).
64.
J.
Buback
,
M.
Kullmann
,
F.
Langhojer
,
P.
Nuernberger
,
R.
Schmidt
,
F.
Würthner
, and
T.
Brixner
,
J. Am. Chem. Soc.
132
,
16510
(
2010
).
65.
66.
H.
Ishitobi
,
Z.
Sekkat
, and
S.
Kawata
,
Chem. Phys. Lett.
300
,
421
(
1999
).
67.
Z.
Sekkat
and
W.
Knoll
,
Photoreactive Organic Thin Films
(
Elsevier Science
,
Amsterdam
,
2002
).
68.
K.
Sasaki
and
T.
Nagamura
,
J. Appl. Phys.
83
,
2894
(
1998
).
69.
H.
Eckhardt
,
A.
Bose
, and
V. A.
Krongauz
,
Polymer
28
,
1959
(
1987
).
70.
B.
Gallinet
and
O. J. F.
Martin
,
Phys. Rev. B
83
,
235427
(
2011
).
71.
B.
Gallinet
and
O. J. F.
Martin
,
ACS Nano
5
,
8999
(
2011
).
72.
RES-TEC
, see www.res-tec.de for “Winspall Data Analysis Software” (accessed 23 September 2019).
73.
M. N.
Polyanskiy
, see https://refractiveindex.info for “Refractive Index Database” (accessed 23 September 2019).
74.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
, 1st ed. (
Pergamon Press
,
Oxford
,
1960
), pp.
253
256
.
75.
C. C.
Katsidis
and
D. I.
Siapkas
,
Appl. Opt.
41
,
3978
(
2002
).
76.
H.
Raether
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(
Springer
,
Berlin
,
1988
), pp.
11
16
.
77.
S. A.
Maier
,
Plasmonics  Fundamentals and Applications
(
Springer
,
New York
,
2007
), pp.
42
44
.
78.
D. V.
Nesterenko
,
S.
Hayashi
, and
Z.
Sekkat
,
Phys. Rev. B
97
,
235437
(
2018
).
79.
D. V.
Nesterenko
,
J. Phys. Conf. Ser.
1368
,
052046
(
2019
).

Supplementary Material

You do not currently have access to this content.