Functionalized layered nanohybrid materials have been thoroughly explored in numerous practical applications including photocatalysis, supercapacitors, and sensors, and have inherent potential to excel in the field of organic resistive random access memory devices as well. Herein, we report an efficient, facile, and cost-effective in situ synthesis route to prepare a layered nanohybrid by grafting cadmium sulfide (CdS) nanorods with exfoliated graphene oxide (GOs) sheets via the one-step hydrothermal functionalization technique. Such a nanohybrid material displays advantageous characteristics possessed by them due to the formation of organic–inorganic heterojunctions at their interface. Sandwiched devices, with a configuration of ITO/reduced graphene oxide–CdS/poly-methyl methacrylate (PMMA)/Al, are fabricated by dispersing different wt. % of the layered nanohybrid in a poly-methyl methacrylate (PMMA) matrix. Detailed current density vs voltage (J–V) studies exhibit excellent bipolar resistive switching characteristics reaching a very low set voltage of 0.48V, high current ION/IOFF ratios of ∼106, and ultralow set/reset power densities of 108/106W/cm2 for devices containing 0.4 wt. % nanohybrid nanofillers. Partial reduction of GOs and the formation of heterojunctions during the synthesis process undoubtedly boost the resistive memory performances resulting from the synergistic effect in layered nanohybrid materials. The fabricated devices have been subjected to various analyses in order to test their stability, repeatability, and reliability, all of which have been found to display encouraging results.

1.
D.
Chen
,
H.
Feng
, and
J.
Li
, “
Graphene oxide: Preparation, functionalization, and electrochemical applications
,”
Chem. Rev.
112
,
6027
6053
(
2012
).
2.
D. W.
Chang
and
J. B.
Baek
, “
Covalently functionalized graphene with organic semiconductors for energy and optoelectronic applications
,”
Mater. Res. Express
3
,
044001
(
2016
).
3.
M.
Zhu
,
Z.
Li
,
B.
Xiao
,
Y.
Lu
,
Y.
Du
,
P.
Yang
, and
X.
Wang
, “
Surfactant assistance in improvement of photocatalytic hydrogen production with the porphyrin noncovalently functionalized graphene nanocomposite
,”
ACS Appl. Mater. Interfaces
5
(
5
),
1732
1740
(
2013
).
4.
S.
Bertolazzi
,
D.
Krasnozhon
, and
A.
Kis
, “
Nonvolatile memory cells based on MoS2/graphene heterostructures
,”
ACS Nano
7
(
4
),
3246
3252
(
2013
).
5.
P.
Cui
,
S.
Seo
,
J.
Lee
,
L.
Wang
,
E.
Lee
,
M.
Min
, and
H.
Lee
, “
Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide
,”
ACS Nano
5
(
9
),
6826
6833
(
2011
).
6.
G.
Khurana
,
P.
Misra
,
N.
Kumar
, and
R. S.
Katiyar
, “
Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods
,”
J. Phys. Chem. C
118
,
21357
21364
(
2014
).
7.
X.
Yan
,
Y.
Pei
,
H.
Chen
,
J.
Zhao
,
Z.
Zhou
,
H.
Wang
,
L.
Zhang
,
J.
Wang
,
X.
Li
,
C.
Qin
,
G.
Wang
,
Z.
Xiao
,
Q.
Zhao
,
K.
Wang
,
H.
Li
,
D.
Ren
,
Q.
Liu
,
H.
Zhou
,
J.
Chen
, and
P.
Zhou
, “
Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors
,”
Adv. Mater.
31
(
7
),
1805284
(
2018
).
8.
X.
Yan
,
K.
Wang
,
J.
Zhao
,
Z.
Zhou
,
H.
Wang
,
J.
Wang
,
L.
Zhang
,
X.
Li
,
Z.
Xiao
,
Q.
Zhao
,
Y.
Pei
,
G.
Wang
,
C.
Qin
,
H.
Li
,
J.
Lou
,
Q.
Liu
, and
P.
Zhou
, “
A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse
,”
Small
15
(
25
),
1900107
(
2019
).
9.
X.
Yan
,
J.
Zhao
,
S.
Liu
,
Z.
Zhou
,
Q.
Liu
,
J.
Chen
, and
X. Y.
Liu
, “
Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing
,”
Adv. Funct. Mater.
28
(
1
),
1705320
(
2017
).
10.
X.
Yan
,
L.
Zhang
,
H.
Chen
,
X.
Li
,
J.
Wang
,
Q.
Liu
,
C.
Lu
,
J.
Chen
,
H.
Wu
, and
P.
Zhou
, “
Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning
,”
Adv. Funct. Mater.
28
(
40
),
1803728
(
2018
).
11.
X.
Yan
,
L.
Zhang
,
Y.
Yang
,
Z.
Zhou
,
J.
Zhao
,
Y.
Zhang
,
Q.
Liu
, and
J.
Chen
, “
Highly improved performance in Zr0.5Hf0.5O2 films inserted by graphene oxide quantum dots layer for resistive switching nonvolatile memory
,”
J. Mater. Chem. C
5
,
11046
11052
(
2017
).
12.
S.
Singh
and
N.
Khare
, “
Reduced graphene oxide coupled CdS/CoFe2O4 ternary nano-hybrid with enhanced photocatalytic activity and stability: A potential role of reduced graphene oxide as a visible light responsive photosensitizer
,”
RSC Adv.
5
,
96562
96572
(
2015
).
13.
Y.
Shi
,
K.
Zhou
,
B.
Wang
,
S.
Jiang
,
X.
Qian
,
Z.
Gui
,
R. K. K.
Yuen
, and
Y.
Hu
, “
Ternary graphene–CoFe2O4/CdS nano-hybrids: Preparation and application as recyclable photocatalysts
,”
J. Mater. Chem. A
2
,
535
544
(
2014
).
14.
V.
Galstyan
,
E.
Comini
,
I.
Kholmanov
,
G.
Faglia
, and
G.
Sberveglieri
, “
Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors
,”
RSC Adv.
6
,
34225
34232
(
2016
).
15.
N.
Kumar
,
A. K.
Srivastava
,
H. S.
Patel
,
B. K.
Gupta
, and
G. D.
Varma
, “
Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications
,”
Eur. J. Inorg. Chem.
2015
(
11
),
1912
1923
.
16.
A. D.
Adhikari
,
R.
Oraon
,
S. K.
Tiwari
,
P.
Saren
,
J. H.
Lee
,
N. H.
Kim
, and
G. C.
Nayak
, “
CdS-CoFe2O4@reduced graphene oxide nano-hybrid: An excellent electrode material for supercapacitor applications
,”
Ind. Eng. Chem. Res.
57
(
5
),
1350
1360
(
2018
).
17.
Y. L.
Chen
,
Z. A.
Hu
,
Y. Q.
Chang
,
H. W.
Wang
,
Z. Y.
Zhang
,
Y. Y.
Yang
, and
H. Y.
Wu
, “
Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix
,”
J. Phys. Chem. C
115
,
2563
2571
(
2011
).
18.
L. H.
Wang
,
W.
Yang
,
Q. Q.
Sun
,
P.
Zhou
,
H. L.
Lu
,
S. J.
Ding
, and
D. W.
Zhang
, “
The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories
,”
Appl. Phys. Lett.
100
,
063509
(
2012
).
19.
S. K.
Hong
,
J. E.
Kim
,
S. O.
Kim
,
S. Y.
Choi
, and
B. J.
Cho
, “
Flexible resistive switching memory device based on graphene oxide
,”
IEEE Electron Device Lett.
31
(
9
),
1005
1007
(
2010
).
20.
H. Y.
Jeong
,
J. Y.
Kim
,
J. W.
Kim
,
J. O.
Hwang
,
J. E.
Kim
,
J. Y.
Lee
,
T. H.
Yoon
,
B. J.
Cho
,
S. O.
Kim
,
R. S.
Ruoff
, and
S. Y.
Choi
, “
Graphene oxide thin films for flexible nonvolatile memory applications
,”
Nano Lett.
10
,
4381
4386
(
2010
).
21.
C. L.
He
,
F.
Zhuge
,
X. F.
Zhou
,
M.
Li
,
G. C.
Zhou
,
Y. W.
Liu
,
J. Z.
Wang
,
B.
Chen
,
W. J.
Su
,
Z. P.
Liu
,
Y. H.
Wu
,
P.
Cui
, and
R. W.
Li
, “
Nonvolatile resistive switching in graphene oxide thin films
,”
Appl. Phys. Lett.
95
,
232101
(
2009
).
22.
D. I.
Son
,
T. W.
Kim
,
J. H.
Shim
,
J. H.
Jung
,
D. U.
Lee
,
J. M.
Lee
,
W. I.
Park
, and
W. K.
Choi
, “
Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer
,”
Nano Lett.
10
,
2441
2447
(
2010
).
23.
X. D.
Zhuang
,
Y.
Chen
,
G.
Liu
,
P. P.
Li
,
C. X.
Zhu
,
E. T.
Kang
,
K. G.
Noeh
,
B.
Zhang
,
J. H.
Zhu
, and
Y. X.
Li
, “
Conjugated-polymer-functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect
,”
Adv. Mater.
22
(
15
),
1731
1735
(
2010
).
24.
C.
Wu
,
F.
Li
,
Y.
Zhang
,
T.
Guo
, and
T.
Chen
, “
Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite
,”
Appl. Phys. Lett.
99
,
042108
(
2011
).
25.
L.
Zhang
,
Y.
Li
,
J.
Shi
,
G.
Shi
, and
S.
Cao
, “
Nonvolatile rewritable memory device based on solution-processable graphene/poly(3-hexylthiophene) nanocomposite
,”
Mater. Chem. Phys.
142
,
626
632
(
2013
).
26.
V.
Senthilkumar
,
A.
Kathalingam
,
S.
Valanarasu
,
V.
Kannan
, and
J. K.
Rhee
, “
Bipolar resistive switching of solution processed TiO2–graphene oxide nanocomposite for nonvolatile memory applications
,”
Phys. Lett. A
377
,
2432
2435
(
2013
).
27.
S.
Bhattacharjee
,
U.
Das
,
P. K.
Sarkar
, and
A.
Roy
, “
Stable charge retention in graphene-MoS2 assemblies for resistive switching effect in ultra-thin super-flexible organic memory devices
,”
Org. Electron.
58
,
145
152
(
2018
).
28.
Z.
Yin
,
Z.
Zeng
,
J.
Liu
,
Q.
He
,
P.
Chen
, and
H.
Zhang
, “
Memory devices using a mixture of MoS2 and graphene oxide as the active layer
,”
Small
9
(
5
),
727
731
(
2013
).
29.
P.
Dalvand
,
M. R.
Mohammadi
, and
D. J.
Fray
, “
One-dimensional cadmium sulfide (CdS) nanostructures by the solvothermal process: Controlling crystal structure and morphology aided by different solvents
,”
Mater. Lett.
65
,
1291
1294
(
2011
).
30.
K. K.
Gogoi
and
A.
Chowdhury
, “
Electric field induced tunable memristive characteristics of exfoliated graphene oxide embedded polymer nanocomposites
,”
J. Appl. Phys.
126
,
025501
(
2019
).
31.
Q.
Li
,
X.
Li
,
S.
Wageh
,
A. A. A.
Ghamdi
, and
J.
Yu
, “
CdS/graphene nanocomposite photocatalysts
,”
Adv. Energy Mater.
5
(
14
),
1500010
(
2015
).
32.
K. K.
Gogoi
,
N. S.
Das
, and
A.
Chowdhury
, “
Tuning of electrical hysteresis in PMMA/GOs/PMMA multi-stacked devices
,”
Mater. Res. Express
6
,
085108
(
2019
).
33.
T. F.
Emiru
and
D. W.
Ayele
, “
Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production
,”
Egypt. J. Basic Appl. Sci.
4
,
74
79
(
2017
).
34.
L.
Wang
,
Y. S.
Liu
,
X.
Jiang
,
D. H.
Qin
, and
Y.
Cao
, “
Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar cells
,”
J. Phys. Chem. C
111
,
9538
9542
(
2007
).
35.
Z.
Gan
,
H.
Xu
, and
Y.
Hao
, “
Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges
,”
Nanoscale
8
,
7794
7807
(
2016
).
36.
C. H.
Chuang
,
Y. F.
Wang
,
Y. C.
Shao
,
Y. C.
Yeh
,
D. Y.
Wang
,
C. W.
Chen
,
J. W.
Chiou
,
S. C.
Ray
,
W. F.
Pong
,
L.
Zhang
,
J. F.
Zhu
, and
J. H.
Guo
, “
The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides
,”
Sci. Rep.
4
,
4525
(
2014
).
37.
A.
Bhaumik
and
J.
Narayan
, “
Conversion of p to n-type reduced graphene oxide by laser annealing at room temperature and pressure
,”
J. Appl. Phys.
121
,
125303
(
2017
).
38.
D. N.
Jayanti
,
A. Y.
Nugraheni
,
Kurniasari
,
M. A.
Baqiya
, and
Darminto
, “
Photoluminescence of reduced graphene oxide prepared from old coconut shell with carbonization process at varying temperatures
,”
IOP Conf. Ser. Mater. Sci. Eng.
196
,
012005
(
2017
).
39.
D. I.
Son
,
J. H.
Kim
,
D. H.
Park
,
W. K.
Choi
,
F.
Li
,
J. H.
Ham
, and
T. W.
Kim
, “
Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer
,”
Nanotechnology
19
,
055204
(
2008
).
40.
P. V.
More
,
C.
Hiragond
,
A.
Dey
, and
P. K.
Khanna
, “
Band engineered p-type RGO–CdS–PANI ternary nanocomposites for thermoelectric applications
,”
Sustain. Energy Fuels
1
,
1766
1773
(
2017
).
41.
D. S. R.
Josephine
,
B.
Sakthivel
,
K.
Sethuraman
, and
A.
Dhakshinamoorthy
, “
Synthesis, characterization and catalytic activity of CdS-graphene oxide nanocomposites
,”
ChemistrySelect
1
(
10
),
2332
2340
(
2016
).
42.
N. R.
Yogamalar
,
K.
Sadhanandam
,
A. C.
Bose
, and
R.
Jayavel
, “
Quantum confined CdS inclusion in graphene oxide for improved electrical conductivity and facile charge transfer in hetero-junction solar cell
,”
RSC Adv.
5
,
16856
16869
(
2015
).
43.
H.
Li
,
L.
Liu
,
Z.
Wang
,
X.
Zheng
,
S.
Meng
,
S.
Chen
, and
X.
Fu
, “
Optimizing the precursor of sulfur source for hydrothermal synthesis of high performance CdS for photocatalytic hydrogen production
,”
RSC Adv.
8
,
11489
11497
(
2018
).
44.
V.
Kumar
,
R. K.
Gupta
,
R. K.
Gundampati
,
D. K.
Singh
,
S.
Mohan
,
S. H.
Hasan
, and
M.
Malviya
, “
Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle-reduced graphene oxide-polyaniline fabricated electrochemical sensor
,”
RSC Adv.
8
,
619
631
(
2018
).
45.
S. W.
Choi
,
J. H.
Yoon
,
M. J.
An
,
W. S.
Chae
,
H. M.
Cho
,
M. G.
Choi
, and
Y. R.
Kim
, “
Organic nanotube induced by photocorrosion of CdS nanorod
,”
Bull. Korean Chem. Soc.
25
(
7
),
983
985
(
2004
).
46.
S.
Bhattacharya
,
A.
Pal
,
A.
Jana
, and
J.
Datta
, “
Synthesis and characterization of CdS nanoparticles decorated TiO2 matrix for an efficient N3 based dye sensitized solar cell (DSSC)
,”
J. Mater. Sci. Mater. Electron.
27
(
12
),
12438
12445
(
2016
).
47.
P.
Kumar
,
N.
Saxena
,
R.
Chandra
,
V.
Gupta
,
A.
Agarwal
, and
D.
Kanjilal
, “
Nanotwinning and structural phase transition in CdS quantum dots
,”
Nanoscale Res. Lett.
7
(
1
),
584
(
2012
).
48.
B.
Ahmed
,
S.
Kumar
,
S.
Kumar
, and
A. K.
Ojha
, “
Shape induced (spherical, sheets and rods) optical and magnetic properties of CdS nanostructures with enhanced photocatalytic activity for photodegradation of methylene blue dye under ultra-violet irradiation
,”
J. Alloys Compd.
679
,
324
334
(
2016
).
49.
M.
Gautam
,
Z.
Shi
, and
A. H.
Jayatissa
, “
Graphene films as transparent electrodes for photovoltaic devices based on cadmium sulfide thin films
,”
Sol. Energy Mater. Sol. Cells
163
,
1
8
(
2017
).
50.
F.
Yang
,
X.
Tian
,
K.
Zhang
,
X.
Zhang
, and
L.
Liu
, “
The morphology-property effect and synergetic catalytic effect of CdS as electrocatalysts for dye-sensitized solar cells
,”
ECS J. Solid State Sci. Technol.
7
(
6
),
311
316
(
2018
).
51.
F.
Yin
,
S.
Wu
,
Y.
Wang
,
L.
Wu
,
P.
Yuan
, and
X.
Wang
, “
Self-assembly of mildly reduced graphene oxide monolayer for enhanced Raman scattering
,”
J. Solid State Chem.
237
,
57
63
(
2016
).
52.
S.
Huang
,
L. Z.
Cheong
,
S.
Wang
,
D.
Wang
, and
C.
Shen
, “
In-situ study of surface structure evolution of silicon anodes by electrochemical atomic force microscopy
,”
Appl. Surf. Sci.
452
,
67
74
(
2018
).
53.
P.
Du
,
Y.
Zhu
,
J.
Zhang
,
D.
Xu
,
W.
Peng
,
G.
Zhang
,
F.
Zhang
, and
X.
Fan
, “
Metallic 1T phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods
,”
RSC Adv.
6
,
74394
74399
(
2016
).
54.
R. S.
Ganesh
,
E.
Durgadevi
,
M.
Navaneethan
,
P.
Raji
,
S.
Ponnusamy
,
C.
Muthamizhchelvan
, and
Y.
Hayakawa
, “
Fabrication of bistable switching device using CdS nanorods embedded in PMMA (polymethylmethacrylate) nanocomposite
,”
J. Mater. Sci. Mater. Electron.
26
,
9010
9015
(
2015
).
55.
J. W.
Lee
and
W. J.
Cho
, “
Fabrication of resistive switching memory based on solution processed PMMA-HfOx blended thin films
,”
Semicond. Sci. Technol.
32
,
025009
(
2019
).
56.
X.
Ding
,
Y.
Feng
,
P.
Huang
,
L.
Liu
, and
J.
Kang
, “
Low-power resistive switching characteristic in HfO2/TiOx bi-layer resistive random-access memory
,”
Nanoscale Res. Lett.
14
,
157
(
2019
).
57.
X.
Yan
,
Q.
Zhao
,
A. P.
Chen
,
J.
Zhao
,
Z.
Zhou
,
J.
Wang
,
H.
Wang
,
L.
Zhang
,
X.
Li
,
Z.
Xiao
,
K.
Wang
,
C.
Qin
,
G.
Wang
,
Y.
Pei
,
H.
Li
,
D.
Ren
,
J.
Chen
, and
Q.
Liu
, “
Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing
,”
Small
15
,
1901423
(
2019
).
58.
G.
Anoop
,
V.
Panwar
,
T. Y.
Kim
, and
J. Y.
Jo
, “
Resistive switching in ZnO nanorods/graphene oxide hybrid multilayer structures
,”
Adv. Electron. Mater.
3
,
1600418
(
2017
).
59.
Y.
Sun
,
D.
Wen
,
X.
Bai
,
J.
Lu
, and
C.
Ai
, “
Ternary resistance switching memory behavior based on graphene oxide embedded in a polystyrene polymer layer
,”
Sci. Rep.
7
,
3938
(
2017
).
60.
J. J. L.
Hmar
, “
Flexible resistive switching bistable memory devices using ZnO nanoparticles embedded in polyvinyl alcohol (PVA) matrix and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)
,”
RSC Adv.
8
,
20423
20433
(
2018
).
61.
M. M.
Rehman
,
B. S.
Yang
,
Y. J.
Yang
,
K. S.
Karimov
, and
K. H.
Choi
, “
Effect of device structure on the resistive switching characteristics of organic polymers fabricated through all printed technology
,”
Curr. Appl. Phys.
17
,
533
540
(
2017
).
62.
Y. F.
Lin
,
Y. J.
Hsu
,
S. Y.
Lu
, and
W. S.
Chiang
, “
One-step formation of core-shell sulfide-oxide nanorod arrays from a single precursor
,”
Nanotechnology
17
,
4773
4782
(
2006
).
63.
S. P.
Mondal
,
V. S.
Reddy
,
S.
Das
,
A.
Dhar
, and
S. K.
Ray
, “
Memory effect in a junction-like CdS nanocomposite/conducting polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] heterostructure
,”
Nanotechnology
19
,
215306
(
2008
).
64.
W.
Guo
,
B.
Zhao
,
Q.
Zhou
,
Y.
He
,
Z.
Wang
, and
N.
Radacsi
, “
Fe-doped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde
,”
ACS Omega
4
,
10252
10262
(
2019
).
65.
W.
Mahmood
,
J.
Ali
,
A.
Thomas
,
S. U.
Awan
,
M.
Jackman
,
A. U.
Haq
,
M. U.
Hassan
, and
N. A.
Shah
, “
Role of Ag1+ substitutional defects on the electronic and optical properties of n-type CdS thin films semiconductor for sustainable and stable window layer in solar cells technology
,”
Opt. Mater.
85
,
143
152
(
2018
).
66.
H. T.
Lin
,
Z.
Pei
, and
Y. J.
Chan
, “
Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device
,”
IEEE Electron Device Lett.
28
(
7
),
569
571
(
2007
).
67.
S.
Bhattacharjee
,
P. K.
Sarkar
,
M.
Prajapat
, and
A.
Roy
, “
Electrical reliability, multilevel data storage and mechanical stability of MoS2-PMMA nanocomposite-based non-volatile memory device
,”
J. Phys. D Appl. Phys.
50
,
265103
(
2017
).
68.
A.
Moudgil
,
N.
Kalyani
,
G.
Sinsinbar
,
S.
Das
, and
P.
Mishra
, “
S-layer protein for resistive switching and flexible nonvolatile memory device
,”
ACS Appl. Mater. Interfaces
10
,
4866
4873
(
2018
).

Supplementary Material

You do not currently have access to this content.