Ferroelectric hafnia-based thin films are promising candidates for emerging high-density embedded nonvolatile memory technologies, thanks to their compatibility with silicon technology and the possibility of 3D integration. The electrode–ferroelectric interface and the crystallization annealing temperature may play an important role in such memory cells. The top interface in a TiN/Hf0.5Zr0.5O2/TiN metal–ferroelectric–metal stack annealed at different temperatures was investigated with X-ray photoelectron spectroscopy. The uniformity and continuity of the 2 nm TiN top electrode was verified by photoemission electron microscopy and conductive atomic force microscopy. Partial oxidation of the electrode at the interface is identified. Hf is reduced near the top interface due to oxygen scavenging by the top electrode. The oxygen vacancy (VO) profile showed a maximum at the top interface (0.71%) and a sharp decrease into the film, giving rise to an internal field. Annealing at higher temperatures did not affect the VO concentration at the top interface but causes the generation of additional VO in the film, leading to a decrease of the Schottky Barrier Height for electrons. The interface chemistry and n-type film doping are believed to be at the origin of several phenomena, including wake-up, imprint, and fatigue. Our results give insights into the physical chemistry of the top interface with the accumulation of defective charges acting as electronic traps, causing a local imprint effect. This may explain the wake-up behavior as well and also can be a possible reason of the weaker endurance observed in these systems when increasing the annealing temperature.

1.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
A. G.
Chernikova
,
M. G.
Kozodaev
,
D. V.
Negrov
,
E. V.
Korostylev
,
M. H.
Park
,
U.
Schroeder
,
C. S.
Hwang
, and
A. M.
Markeev
,
ACS Appl. Mater. Interfaces
10
,
2701
(
2018
).
3.
U.
Schroeder
,
C.
Richter
,
M. H.
Park
,
T.
Schenk
,
M.
Pešić
,
M.
Hoffmann
,
F. P. G.
Fengler
,
D.
Pohl
,
B.
Rellinghaus
,
C.
Zhou
,
C. C.
Chung
,
J. L.
Jones
, and
T.
Mikolajick
,
Inorg. Chem.
57
,
2752
(
2018
).
4.
C.
Richter
,
T.
Schenk
,
M. H.
Park
,
F. A.
Tscharntke
,
E. D.
Grimley
,
J. M.
LeBeau
,
C.
Zhou
,
C. M.
Fancher
,
J. L.
Jones
,
T.
Mikolajick
, and
U.
Schroeder
,
Adv. Electron. Mater.
3
,
1700131
(
2017
).
5.
T.
Shimizu
,
K.
Katayama
,
T.
Kiguchi
,
A.
Akama
,
T. J.
Konno
,
O.
Sakata
, and
H.
Funakubo
,
Sci. Rep.
6
,
32931
(
2016
).
6.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
MRS Commun.
8
,
795
(
2018
).
7.
F. P. G.
Fengler
,
M.
Pešić
,
S.
Starschich
,
T.
Schneller
,
C.
Künneth
,
U.
Böttger
,
H.
Mulaosmanovic
,
T.
Schenk
,
M. H.
Park
,
R.
Nigon
,
P.
Muralt
,
T.
Mikolajick
, and
U.
Schroeder
,
Adv. Electron. Mater.
3
,
1600505
(
2017
).
8.
E. D.
Grimley
,
T.
Schenk
,
X.
Sang
,
M.
Pešić
,
U.
Schroeder
,
T.
Mikolajick
, and
J. M.
LeBeau
,
Adv. Electron. Mater.
2
,
1600173
(
2016
).
9.
A.
Chouprik
,
S.
Zakharchenko
,
M.
Spiridonov
,
S.
Zarubin
,
A.
Chernikova
,
R.
Kirtaev
,
P.
Buragohain
,
A.
Gruverman
,
A.
Zenkevich
, and
D.
Negrov
,
ACS Appl. Mater. Interfaces
10
,
8818
(
2018
).
10.
F. P. G.
Fengler
,
T.
Schenk
,
E. D.
Grimley
,
S.
Slesazeck
,
M.
Pešić
,
J. M.
LeBeau
,
T.
Mikolajick
,
A.
Padovani
,
X.
Sang
,
U.
Schroeder
, and
L.
Larcher
,
Adv. Funct. Mater.
26
,
4601
(
2016
).
11.
P.
Calka
,
E.
Martinez
,
V.
Delaye
,
D.
Lafond
,
G.
Audoit
,
D.
Mariolle
,
N.
Chevalier
,
H.
Grampeix
,
C.
Cagli
,
V.
Jousseaume
, and
C.
Guedj
,
Nanotechnology
24
,
085706
(
2013
).
12.
P.
Calka
,
M.
Sowinska
,
T.
Bertaud
,
D.
Walczyk
,
J.
Dabrowski
,
P.
Zaumseil
,
C.
Walczyk
,
A.
Gloskovskii
,
X.
Cartoixà
,
J.
Suñé
, and
T.
Schroeder
,
ACS Appl. Mater. Interfaces
6
,
5056
(
2014
).
13.
F. P. G.
Fengler
,
M.
Hoffmann
,
S.
Slesazeck
,
T.
Mikolajick
, and
U.
Schroeder
,
J. Appl. Phys.
123
,
204101
(
2018
).
14.
M.
Hyuk Park
,
H.
Joon Kim
,
Y.
Jin Kim
,
W.
Lee
,
T.
Moon
, and
C.
Seong Hwang
,
Appl. Phys. Lett.
102
,
242905
(
2013
).
15.
P. D.
Lomenzo
,
Q.
Takmeel
,
C.
Zhou
,
C. M.
Fancher
,
E.
Lambers
,
N. G.
Rudawski
,
J. L.
Jones
,
S.
Moghaddam
, and
T.
Nishida
,
J. Appl. Phys.
117
,
134105
(
2015
).
16.
A.
Gruverman
,
M.
Spiridonov
,
S.
Zarubin
,
M.
Kozodaev
,
H.
Lu
,
D.
Negrov
,
E.
Suvorova
,
O.
Bak
,
A.
Zenkevich
,
A.
Markeev
,
A.
Chernikova
, and
P.
Buragohain
,
ACS Appl. Mater. Interfaces
8
,
7232
(
2016
).
17.
F.
Ambriz-Vargas
,
G.
Kolhatkar
,
M.
Broyer
,
A.
Hadj-Youssef
,
R.
Nouar
,
A.
Sarkissian
,
R.
Thomas
,
C.
Gomez-Yáñez
,
M. A.
Gauthier
, and
A.
Ruediger
,
ACS Appl. Mater. Interfaces
9
,
13262
(
2017
).
18.
Y.
Matveyev
,
D.
Negrov
,
A.
Chernikova
,
Y.
Lebedinskii
,
R.
Kirtaev
,
S.
Zarubin
,
E.
Suvorova
,
A.
Gloskovskii
, and
A.
Zenkevich
,
ACS Appl. Mater. Interfaces
9
,
43370
(
2017
).
19.
E. O.
Filatova
,
A. S.
Konashuk
,
S. S.
Sakhonenkov
,
A. A.
Sokolov
, and
V. V.
Afanas’ev
,
Sci. Rep.
7
,
4541
(
2017
).
20.
T.
Close
,
G.
Tulsyan
,
C. A.
Diaz
,
S. J.
Weinstein
, and
C.
Richter
,
Nat. Nanotechnol.
10
,
418
(
2015
).
21.
R.
Winter
,
P.
Shekhter
,
K.
Tang
,
L.
Floreano
,
A.
Verdini
,
P. C.
McIntyre
, and
M.
Eizenberg
,
ACS Appl. Mater. Interfaces
8
,
16979
(
2016
).
22.
J. E.
Rault
,
G.
Agnus
,
T.
Maroutian
,
V.
Pillard
,
P.
Lecoeur
,
G.
Niu
,
B.
Vilquin
,
M. G.
Silly
,
A.
Bendounan
,
F.
Sirotti
, and
N.
Barrett
,
Phys. Rev. B
87
,
155146
(
2013
).
23.
C.
Lenser
,
A.
Köhl
,
M.
Patt
,
C. M.
Schneider
,
R.
Waser
, and
R.
Dittmann
,
Phys. Rev. B Condens. Matter Mater. Phys.
90
,
115312
(
2014
).
24.
F.
Gao
,
X.
Ren
,
M.
Yin
,
H.
Fan
,
S. F.
Liu
, and
Z.
Yang
,
AIP Adv.
6
,
15314
(
2016
).
25.
M. H.
Park
,
T.
Mittmann
,
T.
Mikolajick
,
F. P. G.
Fengler
,
C.
Richter
, and
U.
Schroeder
,
Microelectron. Eng.
178
,
48
(
2017
).
26.
S.
Clima
,
D. J.
Wouters
,
C.
Adelmann
,
T.
Schenk
,
U.
Schroeder
,
M.
Jurczak
, and
G.
Pourtois
,
Appl. Phys. Lett.
104
,
092906
(
2014
).
27.
P.
Patsalas
and
S.
Logothetidis
,
J. Appl. Phys.
90
,
4725
(
2001
).
28.
A.
Yagishita
,
T.
Saito
,
K.
Nakajima
,
S.
Inumiya
,
K.
Matsuo
,
T.
Shibata
,
Y.
Tsunashima
,
K.
Suguro
, and
T.
Arikado
,
IEEE Trans. Electron. Devices
48
,
1604
(
2001
).
30.
B.
Subramanian
,
C. V.
Muraleedharan
,
R.
Ananthakumar
, and
M.
Jayachandran
,
Surf. Coat. Technol.
205
,
5014
(
2011
).
31.
D. J. V.
Pulsipher
,
I. T.
Martin
, and
E. R.
Fisher
,
ACS Appl. Mater. Interfaces
2
,
1743
(
2010
).
32.
I.
Milošv
,
H. H.
Strehblow
,
B.
Navinšek
, and
M.
Metikoš-Huković
,
Surf. Interface Anal.
23
,
529
(
1995
).
33.
G. A.
Fontalvo
,
C.
Mitterer
,
N.
Fateh
,
S.
Surnev
,
A.
Glaser
, and
F. P.
Netzer
,
Surf. Sci.
601
,
1153
(
2007
).
34.
L.
Porte
,
F.
Villeurbanne
,
L.
Roux
, and
J.
Hanus
,
Phys. Rev. B
28
,
3214
(
1983
).
35.
N. K.
Ponon
,
D. J. R.
Appleby
,
E.
Arac
,
P. J.
King
,
S.
Ganti
,
K. S. K.
Kwa
, and
A. O.
Neill
,
Thin Solid Films
578
,
31
(
2015
).
36.
S.
Tanuma
and
C. J.
Powell
,
Surf. Interface Anal.
21
,
165
(
1993
).
37.
N. M.
Hamdan
,
E.
Garfunkel
,
S.
Sayan
,
S.
Suzer
,
M. M.
Banaszak Holl
, and
Z.
Hussain
,
J. Vac. Sci. Technol. A Vac. Surf. Films
21
,
106
(
2003
).
38.
F. P. G.
Fengler
,
R.
Nigon
,
P.
Muralt
,
E. D.
Grimley
,
X.
Sang
,
V.
Sessi
,
R.
Hentschel
,
J. M.
Lebeau
,
T.
Mikolajick
, and
U.
Schroeder
,
Adv. Electron. Mater.
4
,
1700547
(
2018
).
39.
D. R.
Islamov
,
A. G.
Chernikova
,
M. G.
Kozodaev
,
T. V.
Perevalov
,
V. A.
Gritsenko
,
O. M.
Orlov
, and
A. V.
Markeev
,
ECS Trans.
75
,
5
(
2016
).
40.
J. E. A.
Kraut
,
R. W.
Grant
, and
S. P.
Eowalczyk
,
Phys. Rev. Lett.
44
,
1620
(
1980
).
41.
L.
He
and
D.
Vanderbilt
,
Phys. Rev. B Condens. Matter Mater. Phys.
68
,
134103
(
2003
).

Supplementary Material

You do not currently have access to this content.