A method to perform spectrum analysis on low power signals between 0.1 and 10 THz is proposed. It utilizes a nanoscale antiferromagnetic tunnel junction (ATJ) that produces an oscillating tunneling anisotropic magnetoresistance, whose frequency is dependent on the magnitude of an evanescent spin current. It is first shown that the ATJ oscillation frequency can be tuned linearly with time. Then, it is shown that the ATJ output is highly dependent on matching conditions that are highly dependent on the dimensions of the dielectric tunneling barrier. Spectrum analysis can be performed by using an appropriately designed ATJ, whose frequency is driven to increase linearly with time, a low pass filter, and a matched filter. This method of THz spectrum analysis, if realized in the experiment, will allow miniaturized electronics to rapidly analyze low power signals with a simple algorithm. It is also found by simulation and analytical theories that for an ATJ with a 0.09μm2 footprint, spectrum analysis can be performed over a 0.25THz bandwidth in just 25 ns on signals that are at the Johnson–Nyquist thermal noise floor.

1.
C.
Sirtori
, “
Applied physics: Bridge for the terahertz gap
,”
Nature
417
,
132
(
2002
).
2.
R.
Kleiner
, “
Filling the terahertz gap
,”
Science
318
,
1254
(
2007
).
3.
M.
Tonouchi
, “
Cutting-edge terahertz technology
,”
Nat. Photon.
1
,
97
(
2007
).
4.
S. S.
Dhillon
,
M. S.
Vitiello
,
E. H.
Linfield
,
A. G.
Davies
et al., “
The 2017 terahertz science and technology roadmap
,”
J. Phys. D: Appl. Phys.
50
,
043001
(
2017
).
5.
A.
Kirilyuk
,
A. V.
Kimel
, and
T.
Rasing
, “
Ultrafast optical manipulation of magnetic order
,”
Rev. Mod. Phys.
82
,
2731
(
2010
).
6.
T.
Kampfrath
,
A.
Sell
,
G.
Klatt
,
A.
Pashkin
et al., “
Coherent terahertz control of antiferromagnetic spin waves
,”
Nat. Photon.
5
,
31
(
2011
).
7.
B. A.
Ivanov
, “
Spin dynamics of antiferromagnets under action of femtosecond laser pulses (Review Article)
,”
Low Temp. Phys.
40
,
91
(
2014
).
8.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronics
,”
Nat. Nanotech.
11
,
231
(
2016
).
9.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
et al., “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
10.
H. V.
Gomonay
and
V. M.
Loktev
, “
Spin transfer and current-induced switching in antiferromagnets
,”
Phys. Rev. B
81
,
144427
(
2010
).
11.
E. V.
Gomonay
and
V. M.
Loktev
, “
Spintronics of antiferromagnetic systems
,”
Low Temp. Phys.
40
,
17
(
2014
).
12.
R.
Cheng
,
D.
Xiao
, and
A.
Brataas
, “
Terahertz antiferromagnetic spin Hall nano-oscillator
,”
Phys. Rev. Lett.
116
,
207603
(
2016
).
13.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
(
2015
).
14.
B. G.
Park
,
J.
Wunderlich
,
X.
Martí
,
V.
Holý
et al., “
A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction
,”
Nat. Mater.
10
,
347
(
2011
).
15.
P.
Wadley
,
B.
Howells
,
J.
Železný
,
C.
Andrews
et al., “
Electrical switching of an antiferromagnet
,”
Science
351
,
587
(
2016
).
16.
R.
Khymyn
,
V.
Tiberkevich
, and
A.
Slavin
, “
Antiferromagnetic spin current rectifier
,”
AIP Adv.
7
,
055931
(
2017
).
17.
P.
Artemchuk
,
O.
Sulymenko
,
O. V.
Prokopenko
,
V. S.
Tyberkevych
, and
A. N.
Slavin
, “Detector of terahertz-frequency signals based on an antiferromagnetic tunnel junction,” in 2019 Joint MMM-Intermag Conference (
IEEE Magnetics Society
,
Washington, DC
,
2019
), Abstract FC-02.
18.
R.
Khymyn
,
I.
Lisenkov
,
V.
Tiberkevich
,
B. A.
Ivanov
, and
A.
Slavin
, “
Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current
,”
Sci. Rep.
7
,
43705
(
2017
).
19.
O. R.
Sulymenko
,
O. V.
Prokopenko
,
V. S.
Tiberkevich
,
A. N.
Slavin
et al., “
Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet
,”
Phys. Rev. Appl.
8
,
064007
(
2017
).
20.
O. R.
Sulymenko
,
O. V.
Prokopenko
,
V. S.
Tyberkevych
, and
A. N.
Slavin
, “
Terahertz-frequency signal source based on an antiferromagnetic tunnel junction
,”
IEEE Magn. Lett.
9
,
3104605
(
2018
).
21.
R.
Khymyn
,
I.
Lisenkov
,
J.
Voorheis
,
O.
Sulymenko
et al., “
Ultra-fast artificial neuron: Generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
,”
Sci. Rep.
8
,
15727
(
2018
).
22.
O.
Sulymenko
,
O.
Prokopenko
,
I.
Lisenkov
,
J.
Åkerman
et al., “
Ultra-fast logic devices using artificial “neurons” based on antiferromagnetic pulse generators
,”
J. Appl. Phys.
124
,
152115
(
2018
).
23.
S.
Louis
,
O.
Sulymenko
,
V.
Tiberkevich
,
J.
Li
et al., “
Ultra-fast wide band spectrum analyzer based on a rapidly tuned spin-torque nano-oscillator
,”
Appl. Phys. Lett.
113
,
112401
(
2018
).
24.
D.
Kriegner
,
K.
Výborný
,
K.
Olejník
,
H.
Reichlová
et al., “
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
,”
Nat. Commun.
7
,
11623
(
2016
).
25.
D.
Gabor
, “
Theory of communication. Part 1: The analysis of information
,”
J. Inst. Electr. Eng. Part III: Radio Commun. Eng.
93
,
429
441
(
1946
).
26.
H. L.
Wang
,
C. H.
Du
,
Y.
Pu
,
R.
Adur
et al., “
Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping
,”
Phys. Rev. Lett.
112
,
197201
(
2014
).
27.
R.
Cheng
,
J.
Xiao
,
Q.
Niu
, and
A.
Brataas
, “
Spin pumping and spin-transfer torques in antiferromagnets
,”
Phys. Rev. Lett.
113
,
057601
(
2014
).
28.
A.
Slavin
and
V.
Tiberkevich
, “
Nonlinear auto-oscillator theory of microwave generation by spin-polarized current
,”
IEEE Trans. Magn.
45
,
1875
(
2009
).
29.
D. M.
Pozar
,
Microwave Engineering
, 3rd ed. (
Wiley
,
New York
,
2005
).
30.
J.
Hayakawa
,
S.
Ikeda
,
F.
Matsukura
,
H.
Takahashi
, and
H.
Ohno
, “
Dependence of giant tunnel magnetoresistance of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions on MgO barrier thickness and annealing temperature
,”
Jpn. J. Appl. Phys.
44
,
L587
(
2005
).
31.
S.
Yuasa
and
D. D.
Djayaprawira
, “
Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier
,”
J. Phys. D: Appl. Phys.
40
,
R337
(
2007
).
32.
A. M. E.
Raj
,
M.
Jayachandran
, and
C.
Sanjeeviraja
, “
Fabrication techniques and material properties of dielectric MgO thin films—A status review
,”
CIRP J. Manuf. Sci. Technol.
2
,
92
(
2010
).
33.
C. H.
Shang
,
J.
Nowak
,
R.
Jansen
, and
J. S.
Moodera
, “
Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions
,”
Phys. Rev. B
58
,
R2917
(
1998
).
34.
O. V.
Prokopenko
,
E.
Bankowski
,
T.
Meitzler
,
V. S.
Tiberkevich
, and
A. N.
Slavin
, “
Influence of temperature on the performance of a spin-torque microwave detector
,”
IEEE Trans. Magn.
48
,
3807
(
2012
).
35.
A. A.
Tulapurkar
,
Y.
Suzuki
,
A.
Fukushima
,
H.
Kubota
et al., “
Spin-torque diode effect in magnetic tunnel junctions
,”
Nature
438
,
339
(
2005
).
36.
O. V.
Prokopenko
,
I. N.
Krivorotov
,
T. J.
Meitzler
,
E.
Bankowski
,
V. S.
Tiberkevich
, and
A. N.
Slavin
, “Spin-torque microwave detectors,” in Magnonics: From Fundamentals to Applications, Topics in Applied Physics, edited by S. O. Demokritov and A. N. Slavin (Springer-Verlag, Berlin, 2013), Vol. 125.
37.
O. V.
Prokopenko
and
A. N.
Slavin
, “
Microwave detectors based on the spin-torque diode effect
,”
Low Temp. Phys.
41
,
353
(
2015
).
You do not currently have access to this content.