Utilizing a reverse micelle process, we have grafted polyacrylate (P) on graphene oxide (GO) to realize polyacrylate grafted graphene oxide (P-GO) nanocomposites, upon whose subsequent reduction, polyacrylate grafted reduced graphene oxide (P-rGO) nanocomposites are achieved. Using techniques such as ultraviolet photoelectron spectroscopy (UPS), x-ray photoelectron spectroscopy, and x-ray absorption near edge structure (XANES) spectroscopy, in conjunction with high-resolution microscopy, Raman spectroscopy, and superconducting quantum interference device analysis, we have studied in depth the electronic, microstructural, electrical, and magnetic properties of these P-GO and P-rGO nanocomposites. While polyacrylate grafting ensures a high solubility of P-GO and P-rGO, the P-rGO nanocomposites additionally show a near doubling of the paramagnetic response (9.6 × 10−3 emu/g) as compared to the r-GO (5.6 × 10−3 emu/g) and P-GO (5.5 × 10−3 emu/g), respectively, at 2 K. The grafting of diamagnetic polyacrylate enhances the magnetic response for the P-GO and P-rGO owing to the increase in the defect states, sp3-type bonding, and enhanced magnetic coupling between the magnetic moments arising due to the presence of nitrogen functionalities. This behavior is further corroborated via the measurements of the electronic structure by XANES and UPS measurements. Thus, the possibility of manipulation of the magnetic behavior along with the abundance of surface functional groups makes both P-GO and P-rGO nanocomposites highly conducive for deriving water-soluble functionalized graphene by linking affinity molecules with polyacrylate backbone for biological and biomedical applications.

1.
D. A.
Dikin
,
S.
Stankovich
,
E. J.
Zimney
,
R. D.
Piner
,
G. H. B.
Dommett
,
G.
Evmenenko
,
S. T.
Nguyen
, and
R. S.
Ruoff
, “
Preparation and characterization of graphene oxide paper
,”
Nature
448
,
457
(
2007
).
2.
C.
Gómez-Navarro
,
R. T.
Weitz
,
A. M.
Bittner
,
M.
Scolari
,
A.
Mews
,
M.
Burghard
, and
K.
Kern
, “
Electronic transport properties of individual chemically reduced graphene oxide sheets
,”
Nano Lett.
7
,
3499
(
2007
).
3.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
, “
Experimental observation of quantum Hall effect and Berry’s phase in graphene
,”
Nature
438
,
201
(
2005
).
4.
H.
Kim
,
Y.
Miura
, and
C. W.
Macosko
, “
Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity
,”
Chem. Mater.
22
,
3441
(
2010
).
5.
H. Y.
Jeong
,
J. Y.
Kim
,
J. W.
Kim
,
J. O.
Hwang
,
J.-E.
Kim
,
J. Y.
Lee
,
T. H.
Yoon
,
B. J.
Cho
,
S. O.
Kim
,
R. S.
Ruoff
, and
S.-Y.
Choi
, “
Graphene oxide thin films for flexible nonvolatile memory applications
,”
Nano Lett.
10
,
4381
(
2010
).
6.
G.
Mittal
,
V.
Dhand
,
K. Y.
Rhee
,
S.-J.
Park
, and
W. R.
Lee
, “
A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites
,”
J. Ind. Eng. Chem.
21
,
11
(
2015
).
7.
S.
Cinti
and
F.
Arduini
, “
Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms
,”
Biosens. Bioelectron.
89
,
107
(
2017
).
8.
S. E.
Matthews
,
C. W.
Pouton
, and
M. D.
Threadgill
, “
Macromolecular systems for chemotherapy and magnetic resonance imaging
,”
Adv. Drug Deliv. Rev.
18
,
219
(
1996
).
9.
K.
Yang
,
L.
Feng
,
X.
Shi
, and
Z.
Liu
, “
Nano-graphene in biomedicine: Theranostic applications
,”
Chem. Soc. Rev.
42
,
530
(
2013
).
10.
C. C.
Berry
and
A. S. G.
Curtis
, “
Functionalisation of magnetic nanoparticles for applications in biomedicine
,”
J. Phys. D Appl. Phys.
36
,
R198
(
2003
).
11.
M.
Mahmoudi
,
S.
Sant
,
B.
Wang
,
S.
Laurent
, and
T.
Sen
,
Adv. Drug Deliv. Rev.
63
,
24
(
2011
).
12.
P.
Kucheryavy
,
J.
He
,
V. T.
John
,
P.
Maharjan
,
L.
Spinu
,
G. Z.
Goloverda
, and
V. L.
Kolesnichenko
, “
Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents
,”
Langmuir
29
,
710
(
2013
).
13.
M.
Talelli
,
C. J. F.
Rijcken
,
T.
Lammers
,
P. R.
Seevinck
,
G.
Storm
,
C. F.
van Nostrum
, and
W. E.
Hennink
, “
Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: Toward a targeted nanomedicine suitable for image-guided drug delivery
,”
Langmuir
25
,
2060
(
2009
).
14.
D.
Lee
and
J.
Seo
, “
Magnetic frustration of graphite oxide
,”
Sci. Rep.
7
,
44690
(
2017
).
15.
L.
Babes
,
B.
Denizot
,
G.
Tanguy
,
J. J.
Le Jeune
, and
P.
Jallet
, “
Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study
,”
J. Colloid Interface Sci.
212
,
474
(
1999
).
16.
Z.
Li
,
L.
Wei
,
M. Y.
Gao
, and
H.
Lei
, “
One-pot reaction to synthesize biocompatible magnetite nanoparticles
,”
Adv. Mater.
17
,
1001
(
2005
).
17.
Y.
Zhao
,
J.
Kang
, and
T.
Tan
, “
Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid)
,”
Polymer
47
,
7702
(
2006
).
18.
A.
Saha
,
S. K.
Basiruddin
,
S. C.
Ray
,
S. S.
Roy
, and
N. R.
Jana
, “
Functionalized graphene and graphene oxide solution via polyacrylate coating
,”
Nanoscale
2
,
2777
(
2010
).
19.
J.-J.
Lin
,
J.-S.
Chen
,
S.-J.
Huang
,
J.-H.
Ko
,
Y.-M.
Wang
,
T.-L.
Chen
, and
L.-F.
Wang
, “
Folic acid-pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications
,”
Biomaterials
30
,
5114
(
2009
).
20.
K.
Yang
,
H.
Gong
,
X.
Shi
,
J.
Wan
,
Y.
Zhang
, and
Z.
Liu
, “
In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration
,”
Biomaterials
34
,
2787
(
2013
).
21.
S.
Roy
,
N.
Soin
,
R.
Bajpai
,
D. S.
Misra
,
J. A.
McLaughlin
, and
S. S.
Roy
, “
Graphene oxide for electrochemical sensing applications
,”
J. Mater. Chem.
21
,
14725
(
2011
).
22.
S. C.
Ray
,
A.
Saha
,
S.
Basiruddin
,
S. S.
Roy
, and
N. R.
Jana
, “
Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application
,”
Diam. Relat. Mater.
20
,
449
(
2011
).
23.
A.
Ganguly
,
S.
Sharma
,
P.
Papakonstantinou
, and
J.
Hamilton
, “
Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies
,”
J. Phys. Chem. C
115
,
17009
(
2011
).
24.
N.
Soin
,
S. S.
Roy
,
C.
O’Kane
,
J. A. D.
McLaughlin
,
T. H.
Lim
, and
C. J. D.
Hetherington
, “
Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and x-ray diffraction
,”
CrystEngComm
13
,
312
(
2011
).
25.
A. C.
Ferrari
and
J.
Robertson
, “
Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond
,”
Phys. Rev. B
63
,
121405
(
2001
).
26.
A.
Kaniyoor
and
S.
Ramaprabhu
, “
A Raman spectroscopic investigation of graphite oxide derived graphene
,”
AIP Adv.
2
,
032183
(
2012
).
27.
R. E.
Shroder
,
R. J.
Nemanich
, and
J. T.
Glass
, “
Analysis of the composite structures in diamond thin films by Raman spectroscopy
,”
Phys. Rev. B
41
,
3738
(
1990
).
28.
N. B.
Colthup
,
Introduction to Infrared and Raman Spectroscopy
(
Academic Press
,
New York
,
1975
).
29.
G.
Consiglio
,
P.
Di Pietro
,
L.
D’Urso
,
G.
Forte
,
G.
Grasso
,
C.
Sgarlata
,
D.
Cossement
,
R.
Snyders
, and
C.
Satriano
, “
Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface
,”
J. Colloid Interface Sci.
506
,
532
(
2017
).
30.
D. C.
Marcano
,
D. V.
Kosynkin
,
J. M.
Berlin
,
A.
Sinitskii
,
Z.
Sun
,
A.
Slesarev
,
L. B.
Alemany
,
W.
Lu
, and
J. M.
Tour
, “
Improved synthesis of graphene oxide
,”
ACS Nano
4
,
4806
(
2010
).
31.
N.
Soin
,
S. C.
Ray
,
S.
Sarma
,
D.
Mazumder
,
S.
Sharma
,
Y.-F.
Wang
,
W.-F.
Pong
,
S. S.
Roy
, and
A. M.
Strydom
, “
Tuning the electronic and magnetic properties of nitrogen functionalized few-layered graphene nanoflakes
,”
J. Phys. Chem. C
121
,
14073
(
2017
).
32.
C.-H.
Chuang
,
S. C.
Ray
,
D.
Mazumder
,
S.
Sharma
,
A.
Ganguly
,
P.
Papakonstantinou
,
J.-W.
Chiou
,
H.-M.
Tsai
,
H.-W.
Shiu
,
C.-H.
Chen
,
H.-J.
Lin
,
J.
Guo
, and
W.-F.
Pong
, “
Chemical modification of graphene oxide by nitrogenation: An x-ray absorption and emission spectroscopy study
,”
Sci. Rep.
7
,
42235
(
2017
).
33.
S. C.
Ray
,
N.
Soin
,
T.
Makgato
,
C. H.
Chuang
,
W. F.
Pong
,
S. S.
Roy
,
S. K.
Ghosh
,
A. M.
Strydom
, and
J. A.
McLaughlin
, “
Graphene supported graphone/graphane bilayer nanostructure material for spintronics
,”
Sci. Rep.
4
,
3862
(
2015
).
34.
A.
Hunt
,
D. A.
Dikin
,
E. Z.
Kurmaev
,
T. D.
Boyko
,
P.
Bazylewski
,
G. S.
Chang
, and
A.
Moewes
, “
Epoxide speciation and functional group distribution in graphene oxide paper-like materials
,”
Adv. Funct. Mater.
22
,
3950
(
2012
).
35.
D.
Geng
,
S.
Yang
,
Y.
Zhang
,
J.
Yang
,
J.
Liu
,
R.
Li
,
T.-K.
Sham
,
X.
Sun
,
S.
Ye
, and
S.
Knights
, “
Nitrogen doping effects on the structure of graphene
,”
Appl. Surf. Sci.
257
,
9193
(
2011
).
36.
R. P.
Gandhiraman
,
D.
Nordlund
,
C.
Javier
,
J. E.
Koehne
,
B.
Chen
, and
M.
Meyyappan
, “
X-ray absorption study of graphene oxide and transition metal oxide nanocomposites
,”
J. Phys. Chem. C
118
,
18706
(
2014
).
37.
D. O.
Idisi
,
J. A.
Oke
,
S.
Sarma
,
S. J.
Moloi
,
S. C.
Ray
,
W. F.
Pong
, and
A. M.
Strydom
, “
Tuning of electronic and magnetic properties of multifunctional r-GO-ATA-Fe2O3-composites for magnetic resonance imaging (MRI) contrast agent
,”
J. Appl. Phys.
126
,
035301
(
2019
).
38.
P.-G.
Ren
,
D.-X.
Yan
,
X.
Ji
,
T.
Chen
, and
Z.-M.
Li
, “
Temperature dependence of graphene oxide reduced by hydrazine hydrate
,”
Nanotechnology
22
,
055705
(
2011
).
39.
S. G.
Urquhart
and
H.
Ade
, “
Trends in the carbonyl core (C 1s, O 1s) → π*C=O transition in the near-edge x-ray absorption fine structure spectra of organic molecules
,”
J. Phys. Chem. B
106
,
8531
(
2002
).
40.
G.
Tourillon
,
D.
Guay
,
A.
Fontaine
,
R.
Garrett
, and
G. P.
Williams
, “
Characterization of metal/organic molecule and metal/polymer interfaces by NEXAFS spectroscopy
,”
Faraday Discuss. Chem. Soc.
89
,
275
(
1990
).
41.
J. F.
Marco
,
J. R.
Gancedo
,
M.
Gracia
,
J. L.
Gautier
,
E.
Ríos
, and
F. J.
Berry
, “
Characterization of the nickel cobaltite, NiCo2O4 prepared by several methods: An XRD, XANES, EXAFS, and XPS study
,”
J. Solid State Chem.
153
,
74
(
2000
).
42.
C.
Viswanathan
,
V.
Senthilkumar
,
R.
Sriranjini
,
D.
Mangalaraj
,
S. K.
Narayandass
, and
J.
Yi. Cryst
, “
Effect of substrate temperature on the properties of vacuum evaporated indium selenide thin films
,”
Cryst. Res. Technol.
40
,
658
(
2005
).
43.
G.
Eda
,
G.
Fanchini
, and
M.
Chhowalla
, “
Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
,”
Nat. Nanotechnol.
3
,
270
(
2008
).
44.
D. S.
Sutar
,
G.
Singh
, and
V.
Divakar Botcha
, “
Electronic structure of graphene oxide and reduced graphene oxide monolayers
,”
Appl. Phys. Lett.
101
,
103103
(
2012
).
45.
G.
Singh
,
V. D.
Botcha
,
D. S.
Sutar
,
P. K.
Narayanam
,
S. S.
Talwar
,
R. S.
Srinivasa
, and
S. S.
Major
, “
Near room temperature reduction of graphene oxide Langmuir–Blodgett monolayers by hydrogen plasma
,”
Phys. Chem. Chem. Phys.
16
,
11708
(
2014
).
46.
M.
Veerapandian
,
L.
Zhang
,
K.
Krishnamoorthy
, and
K.
Yun
, “
Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials
,”
Nanotechnology
24
,
395706
(
2013
).
47.
Y.
Lin
,
Z.
Feng
,
L.
Yu
,
Q.
Gu
,
S.
Wu
, and
D. S.
Su
, “
Insights into the surface chemistry and electronic properties of sp2 and sp3-hybridized nanocarbon materials for catalysis
,”
Chem. Commun.
53
,
4834
(
2017
).
48.
O. V.
Yazyev
and
L.
Helm
, “
Defect-induced magnetism in graphene
,”
Phys. Rev. B
75
,
125408
(
2007
).
49.
M. A. H.
Vozmediano
,
M. P.
López-Sancho
,
T.
Stauber
, and
F.
Guinea
, “
Local defects and ferromagnetism in graphene layers
,”
Phys. Rev. B
72
,
155121
(
2005
).
50.
G.
Li
,
A.
Luican
,
J. M. B.
Lopes de Santos
,
A. H.
Castro Neto
,
A.
Reina
,
J.
Kong
, and
E. Y.
Andrei
, “
Observation of Van Hove singularities in twisted graphene layers
,”
Nat. Phys.
6
,
109
(
2010
).
51.
M.
Wang
,
W.
Huang
,
M. B.
Chan-Park
, and
C. M.
Li
, “
Magnetism in oxidized graphenes with hydroxyl groups
,”
Nanotechnology
22
,
105702
(
2011
).
52.
Y.
Liu
,
N.
Tang
,
X.
Wan
,
Q.
Feng
,
M.
Li
,
Q.
Xu
,
F.
Liu
, and
Y.
Du
, “
Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen
,”
Sci. Rep.
3
,
2566
(
2013
).
53.
K.
Bagani
,
M. K.
Ray
,
B.
Satpati
,
N. R.
Ray
,
M.
Sardar
, and
S.
Banerjee
, “
Contrasting magnetic properties of thermally and chemically reduced graphene oxide
,”
J. Phys. Chem. C
118
,
13254
(
2014
).
54.
A. Y. S.
Eng
,
H. L.
Poh
,
F.
Šaněk
,
M.
Maryško
,
S.
Matějková
,
Z.
Sofer
, and
M.
Pumera
, “
Searching for magnetism in hydrogenated graphene
,”
ACS Nano
7
,
5930
(
2013
).
55.
S.
Qin
,
X.
Guo
,
Y.
Cao
,
Z.
Ni
, and
Q.
Xu
, “
Strong ferromagnetism of reduced graphene oxide
,”
Carbon
78
,
559
(
2014
).
56.
T.
Taniguchi
,
H.
Yokoi
,
M.
Nagamine
,
H.
Tateishi
,
A.
Funatsu
,
K.
Hatakeyama
,
C.
Ogata
,
M.
Ichida
,
H.
Ando
, and
M.
Koinuma
, “
Correlated optical and magnetic properties in photoreduced graphene oxide
,”
J. Phys. Chem. C
118
,
28258
(
2014
).
57.
M.
Enayati
,
A.
Nemati
,
A.
Zarrabi
, and
M. A.
Shokrgozar
, “
The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide
,”
J. Alloys Compd.
784
,
134
148
(
2019
).
58.
M.
Enayati
,
A.
Nemati
,
A.
Zarrabi
, and
M. A.
Shokrgozar
, “
Reduced graphene oxide: An alternative for magnetic resonance imaging contrast agent
,”
Mater. Lett.
233
,
363
366
(
2018
).
59.
Z.
He
,
X.
Yang
,
H.
Xia
,
X.
Zhou
,
M.
Zhao
,
Y.
Song
, and
T.
Wang
, “
Enhancing the ferromagnetization of graphite by successive 12C+ ion implantation steps
,”
Carbon
49
(
6
),
1931
(
2011
).
60.
Y.
Ito
,
C.
Christodoulou
,
M. V.
Nardi
,
N.
Koch
,
M.
Kläui
,
H.
Sachdev
, and
K.
Müllen
, “
Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains
,”
J. Am. Chem. Soc.
137
,
7678
(
2015
).
61.
Q.
Miao
,
L.
Wang
,
Z.
Liu
,
B.
Wei
,
F.
Xu
, and
W.
Fei
, “
Magnetic properties of N-doped graphene with high Curie temperature
,”
Sci. Rep.
6
,
21832
(
2016
).
62.
K.-C.
Zhang
,
Y.-F.
Li
,
Y.
Liu
, and
Y.
Zhu
, “
Density-functional study on the structural and magnetic properties of N-doped graphene oxide
,”
Carbon
102
,
39
(
2016
).
63.
H.
Araki
and
K.
Yoshino
, “
Preparation, molecular structures and novel magnetic properties of organic ferromagnetic compounds by pyrolysis of triphenoxy-triazine and benzoguanamine
,”
J. Phys. Condens. Matter
4
,
L119
(
1992
).
64.
S. C.
Ray
,
S. K.
Bhunia
,
A.
Saha
, and
N. R.
Jana
,
Microelectron. Eng.
146
,
48
52
(
2015
).
You do not currently have access to this content.