In this work, we study the interlayer exchange coupling, J, between two NiFe and FeCo layers in a series of NiFe/Ru1xBx(d)/FeCo synthetic antiferromagnet (SAF) samples, where the thickness of the spacer layer, d, is varied from 0.4 nm to 0.9 nm, and the boron concentration, x, is varied from 0 to 15 at. %. The samples are studied as deposited and after being annealed at 250°C. B is deposited into the Ru spacer layer to investigate what occurs after annealing a FeCoB/Ru/FeCoB SAF structure, which is commonly used in modern nanoscale magnetic devices, in which the FeCoB layer crystallizes to FeCo and B diffuses to adjacent layers. We find that J in as-deposited samples is relatively unaffected by adding up to 15% B into the Ru spacer layer. However, after annealing at 250°C, J changes the sign from antiferromagnetic coupling to ferromagnetic coupling for spacer layers thinner than 0.45nm for 5% and 10% B and thinner than 0.525nm for 15% B. We used transmission electron microscopy energy-dispersive x-ray spectroscopy in order to investigate the diffusion of atoms within a similar Ta(2.5nm)/NiFe(0.8nm)/Ru1xBx(23 nm) layer structure. We find that after annealing at 250°C, the sample containing 15% B within the Ru85B15 layer had significantly more diffusion of Fe into the Ru85B15 layer, from the NiFe layer, as compared to the sample with 0% B. Thus, the presence of B within the spacer layer enhances diffusion of Fe into the spacer layer.

1.
A. D.
Kent
and
D. C.
Worledge
,
Nat. Nanotechnol.
10
,
187
(
2015
).
2.
Flash Memory (Samsung Electronics, 2007), rev. 1.
3.
W.
Reohr
,
H.
Honigschmid
,
R.
Robertazzi
,
D.
Gogl
,
F.
Pesavento
,
S.
Lammers
,
K.
Lewis
,
C.
Arndt
,
Y.
Lu
,
H.
Viehmann
,
R.
Scheuerlein
,
L.-K.
Wang
,
P.
Trouilloud
,
S.
Parkin
,
W.
Gallagher
, and
G.
Muller
,
IEEE Circuits Dev. Mag.
18
,
17
(
2002
).
4.
S.
Chung
,
T.
Kishi
,
J. W.
Park
,
M.
Yoshikawa
,
K. S.
Park
,
T.
Nagase
,
K.
Sunouchi
,
H.
Kanaya
,
G. C.
Kim
,
K.
Noma
,
M. S.
Lee
,
A.
Yamamoto
,
K. M.
Rho
,
K.
Tsuchida
,
S. J.
Chung
,
J. Y.
Yi
,
H. S.
Kim
,
Y. S.
Chun
,
H.
Oyamatsu
, and
S. J.
Hong
, in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), pp. 27.1.1–27.1.4.
5.
M.
Cubukcu
,
O.
Boulle
,
N.
Mikuszeit
,
C.
Hamelin
,
T.
Brächer
,
N.
Lamard
,
M.
Cyrille
,
L.
Buda-Prejbeanu
,
K.
Garello
,
I. M.
Miron
,
O.
Klein
,
G.
de Loubens
,
V. V.
Naletov
,
J.
Langer
,
B.
Ocker
,
P.
Gambardella
, and
G.
Gaudin
,
IEEE Trans. Magn.
54
,
9300204
(
2018
).
6.
C.
Chappert
,
A.
Fert
, and
F.
Van Dau
,
Nat. Mater.
6
,
813
(
2007
).
7.
S. V.
Karthik
,
Y. K.
Takahashi
,
T.
Ohkubo
,
K.
Hono
,
H. D.
Gan
,
S.
Ikeda
, and
H.
Ohno
,
J. Appl. Phys.
111
,
083922
(
2012
).
8.
S.
Ikeda
,
J.
Hayakawa
,
Y.
Ashizawa
,
Y. M.
Lee
,
K.
Miura
,
H.
Hasegawa
,
M.
Tsunoda
,
F.
Matsukura
, and
H.
Ohno
,
Appl. Phys. Lett.
93
,
082508
(
2008
).
9.
V.
Sokalski
,
M. T.
Moneck
,
E.
Yang
, and
J.-G.
Zhu
,
Appl. Phys. Lett.
101
,
072411
(
2012
).
10.
S.
Yuasa
and
D. D.
Djayaprawira
,
J. Phys. D Appl. Phys.
40
,
R337
(
2007
).
11.
J.
Slonczewski
,
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
12.
L.
Cuchet
,
B.
Rodmacq
,
S.
Auffret
,
R. C.
Sousa
,
I. L.
Prejbeanu
, and
B.
Dieny
,
Sci. Rep.
6
,
21246
(
2016
).
13.
M.
Arora
,
C.
Fowley
,
T.
McKinnon
,
E.
Kowalska
,
V.
Sluka
,
A. M.
Deac
,
B.
Heinrich
, and
E.
Girt
,
IEEE Magn. Lett.
8
,
1
(
2017
).
14.
H.
Sato
,
E. C. I.
Enobio
,
M.
Yamanouchi
,
S.
Ikeda
,
S.
Fukami
,
S.
Kanai
,
F.
Matsukura
, and
H.
Ohno
,
Appl. Phys. Lett.
105
,
062403
(
2014
).
15.
T.
Devolder
,
E.
Liu
,
J.
Swerts
,
S.
Couet
,
T.
Lin
,
S.
Mertens
,
A.
Furnemont
,
G.
Kar
, and
J.
De Boeck
,
Appl. Phys. Lett.
109
,
142408
(
2016
).
16.
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
M.
Konoto
, and
S.
Yuasa
,
Appl. Phys. Express
6
,
113006
(
2013
).
17.
D.-Y.
Lee
,
S.-E.
Lee
,
T.-H.
Shim
, and
J.-G.
Park
,
Nanoscale Res. Lett.
11
,
433
(
2016
).
18.
T.
McKinnon
and
E.
Girt
,
Appl. Phys. Lett.
113
,
192407
(
2018
).
19.
L. E.
Nistor
,
B.
Rodmacq
,
C.
Ducruet
,
C.
Portemont
,
I. L.
Prejbeanu
, and
B.
Dieny
,
IEEE Trans. Magn.
46
,
1412
(
2010
).
20.
S.
Ikeda
,
K.
Miura
,
H.
Yamamoto
,
K.
Mizunuma
,
H. D.
Gan
,
M.
Endo
,
S.
Kanai
,
J.
Hayakawa
,
F.
Matsukura
, and
H.
Ohno
,
Nat. Mater.
9
,
721
(
2010
).
21.
Z. R.
Nunn
and
E.
Girt
, arXiv:1901.07055 (2019).
22.
T.
McKinnon
,
P.
Omelchenko
,
B.
Heinrich
, and
E.
Girt
,
J. Appl. Phys.
123
,
223903
(
2018
).
23.
E.
Montoya
,
T.
McKinnon
,
A.
Zamani
,
E.
Girt
, and
B.
Heinrich
,
J. Magn. Magn. Mater.
356
,
12
(
2014
).
24.
C.
Eyrich
,
A.
Zamani
,
W.
Huttema
,
M.
Arora
,
D.
Harrison
,
F.
Rashidi
,
D.
Broun
,
B.
Heinrich
,
O.
Mryasov
,
M.
Ahlberg
,
O.
Karis
,
P. E.
Jönsson
,
M.
From
,
X.
Zhu
, and
E.
Girt
,
Phys. Rev. B
90
,
235408
(
2014
).
25.
P.
Omelchenko
,
E. A.
Montoya
,
C.
Coutts
,
B.
Heinrich
, and
E.
Girt
,
Sci. Rep.
7
,
4861
(
2017
).
26.
P.
Bruno
and
C.
Chappert
,
Phys. Rev. Lett.
67
,
1602
(
1991
).
27.
S. N.
Okuno
and
K.
Inomata
,
Phys. Rev. Lett.
70
,
1711
(
1993
).
28.
S. C.
Jain
,
W.
Schoenmaker
,
R.
Lindsay
,
P. A.
Stolk
,
S.
Decoutere
,
M.
Willander
, and
H. E.
Maes
,
J. Appl. Phys.
91
,
8919
(
2002
).
29.
J.
Schmalhorst
,
H.
Brückl
,
G.
Reiss
,
G.
Gieres
, and
J.
Wecker
,
J. Appl. Phys.
94
,
3268
(
2003
).
You do not currently have access to this content.