Developing novel controllable two-dimensional semiconductor materials is crucial to thin film spintronic devices, which may lead to a revolution of information devices. Recently, the easily cleavable CrTe3 has attracted much attention for studying the magnetic properties of two-dimensional materials. In this paper, we have demonstrated theoretically that an elastic tensile strain can turn the antiferromagnetic coupled single-layer CrTe3 (SL-CrTe3) into a ferromagnetic (FM) system, favoring its potential application in thin film spintronic devices. The FM SL-CrTe3 undergoes a further transition from a semiconductor to a metal under a biaxial tensile strain of 9%. The kinetic stability of SL-CrTe3 under 10% tensile strain is verified by a molecular dynamics simulation at room temperature. We suppose that the strain-dependent magnetic behaviors of SL-CrTe3 resulted from the competition between superexchange and direct interactions. The tunable magnetic and electronic properties of SL-CrTe3 imply immense potential in spintronic device applications.

1.
C.
Tan
,
X.
Cao
,
X. J.
Wu
,
Q.
He
,
J.
Yang
,
X.
Zhang
,
J.
Chen
,
W.
Zhao
,
S.
Han
, and
G. H.
Nam
,
Chem. Rev.
117
,
6225
(
2017
).
2.
Z.
Lin
,
Y.
Liu
,
U.
Halim
,
M.
Ding
,
Y.
Liu
,
Y.
Wang
,
C.
Jia
,
P.
Chen
,
X.
Duan
,
C.
Wang
,
F.
Song
,
M.
Li
,
C.
Wan
,
Y.
Huang
, and
X.
Duan
,
Nature
562
,
254
258
(
2018
).
3.
Z.
Wang
,
T.
Zhang
,
M.
Ding
,
B.
Dong
,
Y.
Li
,
M.
Chen
,
X.
Li
,
J.
Huang
,
H.
Wang
,
X.
Zhao
,
Y.
Li
,
D.
Li
,
C.
Jia
,
L.
Sun
,
H.
Guo
,
Y.
Ye
,
D.
Sun
,
Y.
Chen
,
T.
Yang
,
J.
Zhang
,
S.
Ono
,
Z.
Han
, and
Z.
Zhang
,
Nat. Nanotechnol.
13
,
554
559
(
2018
).
4.
B.
Huang
,
G.
Clark
,
E. N.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
,
W.
Yao
,
D.
Xiao
,
P.
Jarillo-Herrero
, and
X.
Xu
,
Nature
546
,
270
(
2017
).
5.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
,
Y.
Wang
,
Z. Q.
Qiu
,
R. J.
Cava
,
S. G.
Louie
,
J.
Xia
, and
X.
Zhang
,
Nature
546
,
265
(
2017
).
6.
N.
Miao
,
B.
Xu
,
L.
Zhu
,
J.
Zhou
, and
Z.
Sun
,
J. Am. Chem. Soc.
140
,
2417
2420
(
2018
).
7.
H.
Cheng
,
J.
Zhou
,
M.
Yang
,
L.
Shen
,
J.
Linghu
,
Q.
Wu
,
P.
Qian
, and
Y. P.
Feng
,
J. Mater. Chem. C
6
,
8435
8443
(
2018
).
8.
B.
Xia
,
Q.
Guo
,
D.
Gao
,
S.
Shi
, and
K.
Tao
,
J. Phys. D Appl. Phys.
49
,
165003
(
2016
).
9.
F.
Zheng
,
J.
Zhao
,
Z.
Liu
,
M.
Li
,
M.
Zhou
,
S.
Zhang
,
P.
Zhang
,
F.
Zheng
,
J.
Zhao
, and
Z.
Liu
,
Nanoscale
10
,
14298
(
2018
).
10.
X.
Chen
,
J.
Qi
, and
D.
Shi
,
Phys. Lett. A
379
,
60
63
(
2015
).
11.
C.
Huang
,
J.
Feng
,
F.
Wu
,
D.
Ahmed
,
B.
Huang
,
H.
Xiang
,
K.
Deng
, and
E.
Kan
,
J. Am. Chem. Soc.
140
,
11519
11525
(
2018
).
12.
M. A.
Mcguire
,
V. O.
Garlea
,
K. C.
Santosh
,
V. R.
Cooper
,
J.
Yan
,
H.
Cao
, and
B. C.
Sales
,
Phys. Rev. B.
95
,
144421
(
2017
).
13.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
14.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
16.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
5192
(
1976
).
17.
D. A.
Garanin
,
Phys. Rev. B
53
,
11593
11605
(
1996
).
18.
R. F. L.
Evans
,
W. J.
Fan
,
P.
Chureemart
,
T. A.
Ostler
,
M. O. A.
Ellis
, and
R. W.
Chantrell
,
J. Phys. Condens. Matter
26
,
103202
(
2014
).
19.
P.
Asselin
,
R. F. L.
Evans
,
J.
Barker
,
R. W.
Chantrell
,
R.
Yanes
,
O.
Chubykalo-Fesenko
,
D.
Hinzke
, and
U.
Nowak
,
Phys. Rev. B
82
,
054415
(
2010
).
20.
R. F. L.
Evans
,
U.
Atxitia
, and
R. W.
Chantrell
,
Phys. Rev. B
91
,
144425
(
2015
).
21.
K. O.
Klepp
and
H.
Ipser
,
Monatsh. Chem.
110
,
499
(
1979
).
22.
L.
Hai
,
W.
Jumiati
,
Y.
Zongyou
, and
Z.
Hua
,
Acc. Chem. Res.
47
,
1067
1075
(
2014
).
23.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
24.
J.
Lado
and
J.
Fernández-Rossier
,
2D Mater.
4
,
035002
(
2017
).
25.
J.
Liu
,
M.
Pinghui
,
S.
Mengchao
,
G.
Dan
, and
L.
Jiwu
,
J. Appl. Phys.
124
,
044303
(
2018
).
26.
M.
Yandong
,
D.
Ying
,
G.
Meng
,
N.
Chengwang
,
Z.
Yingtao
, and
H.
Baibiao
,
ACS Nano
6
,
1695
1701
(
2012
).
27.
Y.
Zhou
,
Z.
Wang
,
P.
Yang
,
X.
Zu
,
L.
Yang
,
X.
Sun
, and
F.
Gao
,
ACS Nano
6
,
9727
9736
(
2012
).
28.
J. B.
Goodenough
,
Phys. Rev.
100
,
564
573
(
1955
).
29.
J.
Kanamori
,
J. Appl. Phys.
31
,
S14
S23
(
1960
).
30.
P. W.
Anderson
,
Phys. Rev.
115
,
2
13
(
1959
).
31.
H. Y.
Lv
,
W. J.
Lu
,
D. F.
Shao
,
Y.
Liu
, and
Y. P.
Sun
,
Phys. Rev. B
92
,
214419
(
2015
).
32.
I. B.
Bersuker
,
Chem. Rev.
113
,
1351
1390
(
2013
).
33.
S.
Nosé
,
J. Chem. Phys.
81
,
511
519
(
1984
).
34.
D.
Bucher
,
L. C. T.
Pierce
,
J. A.
McCammon
, and
P. R. L.
Markwick
,
J. Chem. Theory. Comput.
7
,
890
897
(
2011
).
35.
S.
Lv
,
H.
Li
,
X.
Liu
,
D.
Han
,
Z.
Wu
, and
J.
Meng
,
J. Phys. Chem. C
114
,
16710
16715
(
2010
).
You do not currently have access to this content.