Resonant excitation and manipulation of complex interactions among two or more resonances in high-index dielectric nanostructures provide great opportunities for engineering novel optical phenomena and applications. However, difficulties often arise when interpreting the observed spectra because of the overlap of the broad resonances contributed by many factors such as particle size, shape, and background index. Therefore, selective excitation of resonances that spectrally overlap with each other provides a gateway towards an improved understanding of the complex interactions. Here, we demonstrate selective excitation and enhancement of multipolar resonances of silicon nanospheres using cylindrical vector beams (CVBs) with different diameters of nanospheres and numerical apertures (NAs) of the excitations. By combining single particle spectroscopy and electrodynamic simulations, we show that the radially polarized beam can selectively excite the electric multipoles, whereas the azimuthally polarized beam can selectively excite the magnetic multipoles even though multipolar resonances are convoluted together due to their spectral overlap. Moreover, focusing the CVBs with high NA can lead to a dominant longitudinal polarization of the electric or magnetic field. We show that the enhanced longitudinal polarization with increasing NA of the radially and azimuthally polarized beams can selectively enhance the electric and magnetic multipolar resonances, respectively. Our approach can be used as a spectroscopy tool to enhance and identify multipolar resonances leading to a better understanding of light-matter interactions in other dielectric nanostructures as well as serve as a first step toward excitation of dark mode and Fano resonances in dielectric oligomers by breaking the symmetry of the nanostructures.

1.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk'yanchuk
,
Science
354
,
aag2472
(
2016
).
2.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
1983
).
3.
A. B.
Evlyukhin
,
C.
Reinhardt
,
A.
Seidel
,
B. S.
Luk'yanchuk
, and
B. N.
Chichkov
,
Phys. Rev. B
82
,
045404
(
2010
).
4.
A. B.
Evlyukhin
,
S. M.
Novikov
,
U.
Zywietz
,
R. L.
Eriksen
,
C.
Reinhardt
,
S. I.
Bozhevolnyi
, and
B. N.
Chichkov
,
Nano Lett.
12
,
3749
(
2012
).
5.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. H.
Fu
,
J.
Zhang
, and
B.
Luk'yanchuk
,
Sci. Rep.
2
,
492
(
2012
).
6.
Y. H.
Fu
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. F.
Yu
, and
B.
Luk'yanchuk
,
Nat. Commun.
4
,
1527
(
2013
).
7.
P.
Albella
,
M. A.
Poyli
,
M. K.
Schmidt
,
S. A.
Maier
,
F.
Moreno
,
J. J.
Sáenz
, and
J.
Aizpurua
,
J. Phys. Chem. C
117
,
13573
(
2013
).
8.
B.
Rolly
,
B.
Bebey
,
S.
Bidault
,
B.
Stout
, and
N.
Bonod
,
Phys. Rev. B
85
,
245432
(
2012
).
9.
M.
Caldarola
,
P.
Albella
,
E.
Cortés
,
M.
Rahmani
,
T.
Roschuk
,
G.
Grinblat
,
R. F.
Oulton
,
A. V.
Bragas
, and
S. A.
Maier
,
Nat. Commun.
6
,
7915
(
2015
).
10.
A. E.
Miroshnichenko
,
A. B.
Evlyukhin
,
Y. F.
Yu
,
R. M.
Bakker
,
A.
Chipouline
,
A. I.
Kuznetsov
,
B.
Luk'yanchuk
,
B. N.
Chichkov
, and
Y. S.
Kivshar
,
Nat. Commun.
6
,
8069
(
2015
).
11.
L.
Wei
,
Z.
Xi
,
N.
Bhattacharya
, and
H. P.
Urbach
,
Optica
3
,
799
(
2016
).
12.
G.
Grinblat
,
Y.
Li
,
M. P.
Nielsen
,
R. F.
Oulton
, and
S. A.
Maier
,
Nano Lett.
16
,
4635
(
2016
).
13.
L.
Zou
,
W.
Withayachumnankul
,
C. M.
Shah
,
A.
Mitchell
,
M.
Bhaskaran
,
S.
Sriram
, and
C.
Fumeaux
,
Opt. Express
21
,
1344
(
2013
).
14.
D. S.
Filonov
,
A. E.
Krasnok
,
A. P.
Slobozhanyuk
,
P. V.
Kapitanova
,
E. A.
Nenasheva
,
Y. S.
Kivshar
, and
P. A.
Belov
,
Appl. Phys. Lett.
100
,
201113
(
2012
).
15.
B.-I.
Popa
and
S. A.
Cummer
,
Phys. Rev. Lett.
100
,
207401
(
2008
).
16.
J. A.
Schuller
,
R.
Zia
,
T.
Taubner
, and
M. L.
Brongersma
,
Phys. Rev. Lett.
99
,
107401
(
2007
).
17.
M. I.
Shalaev
,
J.
Sun
,
A.
Tsukernik
,
A.
Pandey
,
K.
Nikolskiy
, and
N. M.
Litchinitser
,
Nano Lett.
15
,
6261
(
2015
).
18.
M.
Khorasaninejad
,
W. T.
Chen
,
R. C.
Devlin
,
J.
Oh
,
A. Y.
Zhu
, and
F.
Capasso
,
Science
352
,
1190
(
2016
).
19.
M. R.
Shcherbakov
 et al.,
Nano Lett.
15
,
6985
(
2015
).
20.
M. R.
Shcherbakov
 et al.,
Nano Lett.
14
,
6488
(
2014
).
21.
D. G.
Baranov
,
S. V.
Makarov
,
V. A.
Milichko
,
S. I.
Kudryashov
,
A. E.
Krasnok
, and
P. A.
Belov
,
ACS Photonics
3
,
1546
(
2016
).
22.
Y.
Zhang
,
M.
Nieto-Vesperinas
, and
J. J.
Sáenz
,
J. Opt.
17
,
105612
(
2015
).
23.
B. S.
Luk'yanchuk
,
N. V.
Voshchinnikov
,
R.
Paniagua-Domínguez
, and
A. I.
Kuznetsov
,
ACS Photonics
2
,
993
(
2015
).
24.
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
,
Phys. Rev. B
84
,
235429
(
2011
).
25.
M. A.
van de Haar
,
J.
van de Groep
,
B. J. M.
Brenny
, and
A.
Polman
,
Opt. Express
24
,
2047
(
2016
).
26.
J.
Zhang
,
K. F.
MacDonald
, and
N. I.
Zheludev
,
Opt. Express
21
,
26721
(
2013
).
28.
K. S.
Youngworth
and
T. G.
Brown
,
Opt. Express
7
,
77
(
2000
).
29.
M.
Kasperczyk
,
S.
Person
,
D.
Ananias
,
L. D.
Carlos
, and
L.
Novotny
,
Phys. Rev. Lett.
114
(
5
),
163903
(
2015
).
30.
U.
Manna
,
J.-H.
Lee
,
T.-S.
Deng
,
J.
Parker
,
S.
Shepherd
,
Y.
Weizmann
, and
N. F.
Scherer
,
Nano Lett.
17
,
7196
(
2017
).
31.
P.
Wozniak
,
P.
Banzer
, and
G.
Leuchs
,
Laser Photonics Rev.
9
,
231
(
2015
).
32.
T.
Das
and
J. A.
Schuller
,
Phys. Rev. B
95
,
201111
(
2017
).
33.
J.
Sancho-Parramon
and
S.
Bosch
,
ACS Nano
6
,
8415
(
2012
).
34.
P.
Nordlander
,
C.
Oubre
,
E.
Prodan
,
K.
Li
, and
M. I.
Stockman
,
Nano Lett.
4
,
899
(
2004
).
35.
E.
Prodan
,
C.
Radloff
,
N. J.
Halas
, and
P.
Nordlander
,
Science
302
,
419
(
2003
).
36.
B.
Luk'yanchuk
,
N. I.
Zheludev
,
S. A.
Maier
,
N. J.
Halas
,
P.
Nordlander
,
H.
Giessen
, and
C. T.
Chong
,
Nat. Mater.
9
,
707
(
2010
).
37.
A.
Yanai
,
M.
Grajower
,
G. M.
Lerman
,
M.
Hentschel
,
H.
Giessen
, and
U.
Levy
,
ACS Nano
8
,
4969
(
2014
).
38.
A. V.
Failla
,
H.
Qian
,
A.
Hartschuh
, and
A. J.
Meixner
,
Nano Lett.
6
,
1374
(
2006
).
39.
G.
Bautista
,
M. J.
Huttunen
,
J.
Mäkitalo
,
J. M.
Kontio
,
J.
Simonen
, and
M.
Kauranen
,
Nano Lett.
12
,
3207
(
2012
).
41.
T. S.
Deng
,
J.
Parker
,
Y.
Yifat
,
N.
Shepherd
, and
N. F.
Scherer
,
J. Phys. Chem. C
122
,
27662
(
2018
).
42.
J. H.
Yan
,
P.
Liu
,
Z. Y.
Lin
,
H.
Wang
,
H. J.
Chen
,
C. X.
Wang
, and
G. W.
Yang
,
Nat. Commun.
6
,
7042
(
2015
).
43.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2006
).
44.
Q.
Zhan
,
Adv. Opt. Photonics
1
,
1
(
2009
).
45.
M.
Stalder
and
M.
Schadt
,
Opt. Lett.
21
,
1948
(
1996
).
46.
H.
Sugimoto
and
M.
Fujii
,
Adv. Opt. Mater.
5
,
1700332
(
2017
).
47.
See https://www.lumerical.com/products/fdtd/ for details on the three dimensional Finite Difference Time Domain (FDTD) method.
48.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic
,
1998
).
49.
R.
Wang
and
L.
Dal Negro
,
Opt. Express
24
,
19048
(
2016
).
50.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley and Sons
,
1998
).
51.
K.
Kim
and
E.
Wolf
,
Opt. Commun.
59
,
1
(
1986
).
52.
E. E.
Radescu
and
G.
Vaman
,
Phys. Rev. E
65
,
046609
(
2002
).
53.
H.
Thanh Xuan
,
X.
Chen
, and
C. J. R.
Sheppard
,
J. Opt. Soc. Am.
29
,
32
(
2012
).

Supplementary Material

You do not currently have access to this content.