We present a broadband infrared and optical study of the compositionally complex nickel-based superalloy Inconel-718, a common material used in additive manufacturing using the direct metal laser sintering (DMLS) technique. We find a broad, featureless spectral emissivity, which is consistent with dc transport measurements and contextualize the results against literature reports of disordered metals. We show that electronic structure calculations based on first-principles modeling can explain most of the spectral weight distribution and show that the peculiar infrared optical properties in this class of materials can present challenges in accurately reporting remote temperature sensing in DMLS.

1.
N.
Yu
, “Process parameter optimization for direct metal laser sintering (DMLS),” Ph.D. thesis (National University of Singapore, 2005).
2.
D.
Hu
and
R.
Kovacevic
, “
Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
217
,
441
452
(
2003
).
3.
M. H.
Farshidianfar
,
A.
Khajepour
, and
A. P.
Gerlich
, “
Effect of real-time cooling rate on microstructure in laser additive manufacturing
,”
J. Mater. Process. Technol.
231
,
468
478
(
2016
).
4.
A.
Gusarov
,
I.
Yadroitsev
,
P.
Bertrand
, and
I.
Smurov
, “
Heat transfer modelling and stability analysis of selective laser melting
,”
Appl. Surf. Sci.
254
,
975
979
(
2007
).
5.
E.
Mirkoohi
,
J.
Ning
,
P.
Bocchini
,
O.
Fergani
,
K.-N.
Chiang
, and
S. Y.
Liang
, “
Thermal modeling of temperature distribution in metal additive manufacturing considering effects of build layers, latent heat, and temperature-sensitivity of material properties
,”
J. Manuf. Mater. Process.
2
(
3
),
63
(
2018
).
6.
P.
Michaleris
, “
Modeling metal deposition in heat transfer analyses of additive manufacturing processes
,”
Finite Elem. Anal. Des.
86
,
51
60
(
2014
).
7.
A. B.
Kuzmenko
, “
Kramers-Kronig constrained variational analysis of optical spectra
,”
Rev. Sci. Instrum.
76
,
083108
(
2005
).
8.
H. P.
Davey
, “
Precision measurements of the lattice constants of twelve common metals
,”
Phys. Rev.
25
,
753
761
(
1925
).
9.
G.
Kresse
and
J.
Furthmü
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
10.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
11.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
12.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
, “
Linear optical properties in the projector-augmented wave methodology
,”
Phys. Rev. B
73
,
045112
(
2006
).
13.
S.
Baroni
and
R.
Resta
, “
Ab initio calculation of the macroscopic dielectric constant in silicon
,”
Phys. Rev. B
33
,
7017
7021
(
1986
).
14.
L.
del Campo
,
R. B.
Pérez-Sáez
,
L.
González-Fernández
,
X.
Esquisabel
,
I.
Fernández
,
P.
González-Martín
, and
M. J.
Tello
, “
Emissivity measurements on aeronautical alloys
,”
J. Alloys Compd.
489
,
482
487
(
2010
).
15.
S.
Ray
and
J.
Tauc
, “
Optical and magneto-optical properties of metallic glass Fe80B20
,”
Solid State Commun.
34
,
769
772
(
1980
).
16.
R.
Lasser
and
N. V.
Smith
, “
Interband optical transitions in gold in the photon energy range 2–25 eV
,”
Solid State Commun.
37
,
507
509
(
1981
).
17.
E.
Hauser
,
R. J.
Zirke
,
J.
Tauc
,
J. J.
Hauser
, and
S. R.
Nagel
, “
Optical properties of amorphous metallic alloys
,”
Phys. Rev. Lett.
40
,
1733
1736
(
1978
).
18.
C.
Herrera
and
I.
Sochnikov
, “
Precision measurements of the AC field dependence of the superconducting transition in strontium titanate
,”
J. Supercond. Novel Magn.
33
,
201
203
(
2019
). arXiv:1904.03121.
19.
G.
Pottlacher
,
H.
Hosaeus
,
E.
Kaschnitz
, and
A.
Seifter
, “
Thermophysical properties of solid and liquid Inconel 718 alloy
,”
Scand. J. Metall.
31
,
161
168
(
2002
).
20.
J. H.
Mooij
, “
Electrical conduction in concentrated disordered transition metal alloys
,”
Phys. Status Solidi
A17
,
521
(
1973
).
21.
S. R.
Nagel
, “Metallic glasses,” in Advances in Chemical Physics (Wiley, 1982), pp. 227–276.
22.
X.
Li
,
J.
Shi
,
C.
Wang
,
G.
Cao
,
A.
Russell
,
Z.
Zhou
,
C.
Li
, and
G.
Chen
, “
Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting
,”
J. Alloys Compd.
764
,
639
649
(
2018
).
23.
F. F.
Wooten
,
Optical Properties of Solids
(
Academic Press, Inc.
,
1971
), p.
260
.
24.
M. M.
Qazilbash
,
J. J.
Hamlin
,
R. E.
Baumbach
,
L.
Zhang
,
D. J.
Singh
,
M. B.
Maple
, and
D. N.
Basov
, “
Electronic correlations in the iron pnictides
,”
Nat. Phys.
5
,
647
650
(
2009
).
25.
S.
Ewald
,
F.
Kies
,
S.
Hermsen
,
M.
Voshage
,
C.
Haase
, and
J. H.
Schleifenbaum
, “
Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion
,”
Materials
12
,
1706
(
2019
).
26.
The Minerals, Metals, and Materials Society (TMS), Advanced Computation and Data in Materials and Manufacturing: Core Knowledge Gaps and Opportunities (TMS, 2018).
27.
R. J.
Hebert
, “
Viewpoint: Metallurgical aspects of powder bed metal additive manufacturing
,”
J. Mater. Sci.
51
,
1165
1175
(
2016
).
28.
S.
Kou
, Welding Metallurgy, 2nd ed. (John Wiley & Sons, Inc., 2003).
29.
T.
Zhang
,
H.
Li
,
S.
Liu
,
S.
Shen
,
H.
Xie
,
W.
Shi
,
G.
Zhang
,
B.
Shen
,
L.
Chen
,
B.
Xiao
, and
M.
Wei
, “
Evolution of molten pool during selective laser melting of Ti–6Al–4V
,”
J. Phys. D: Appl. Phys.
52
,
055302
(
2019
).
30.
M.
Chiumenti
,
X.
Lin
,
M.
Cervera
,
W.
Lei
,
Y.
Zheng
, and
W.
Huang
, “
Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: Thermal analysis
,”
Rapid Prototyp. J.
23
,
448
463
(
2017
).
31.
J.
Heigel
,
P.
Michaleris
, and
E.
Reutzel
, “
Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V
,”
Addit. Manuf.
5
,
9
19
(
2015
).
32.
P.
Promoppatum
,
S. C.
Yao
,
P. C.
Pistorius
, and
A. D.
Rollett
, “
A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion
,”
Engineering
3
,
685
694
(
2017
).
33.
C.
Cagran
,
H.
Reschab
,
R.
Tanzer
,
W.
Schützenhöfer
,
A.
Graf
, and
G.
Pottlacher
, “
Normal spectral emissivity of the industrially used alloys NiCr20TiAl, Inconel 718, X2CrNiMo18-14-3, and another austenitic steel at 684.5 nm
,”
Int. J. Thermophys.
30
,
1300
1309
(
2008
).
34.
J. N.
Hancock
,
T.
McKnew
,
Z.
Schlesinger
,
J. L.
Sarrao
, and
Z.
Fisk
, “
Infrared dynamics of YbIn1-xAgxCu4: Kondo scaling, sum rules, and temperature dependence
,”
Phys. Rev. B
73
(
12
),
125119
(
2006
).
35.
W. M.
Rohsenow
,
J. R.
Hartnett
, and
Y. I.
Cho
,
Handbook of Heat Transfer
(
McGraw-Hill
,
1998
).
You do not currently have access to this content.