Antiferromagnetic materials promise improved performance for spintronic applications as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators (hematite) and NiO in bilayer heterostructures with a Pt heavy-metal top electrode. While rotating an external magnetic field in three orthogonal planes, we record the longitudinal and the transverse resistivities of Pt and observe characteristic resistivity modulations consistent with the SMR effect. We analyze both their amplitude and phase and compare the data to the results from a prototypical collinear ferrimagnetic /Pt bilayer. The observed magnetic field dependence is explained in a comprehensive model, based on two magnetic sublattices and taking into account magnetic field-induced modifications of the domain structure. Our results show that the SMR allows us to understand the spin configuration and to investigate magnetoelastic effects in antiferromagnetic multi-domain materials. Furthermore, in /Pt bilayers, we find an unexpectedly large SMR amplitude of , twice as high as for prototype /Pt bilayers, making the system particularly interesting for room-temperature antiferromagnetic spintronic applications.
Skip Nav Destination
Article navigation
28 June 2020
Research Article|
June 23 2020
Spin Hall magnetoresistance in antiferromagnetic insulators
Special Collection:
Antiferromagnetic Spintronics
Stephan Geprägs
;
Stephan Geprägs
a)
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
a)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
Matthias Opel
;
Matthias Opel
b)
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
Search for other works by this author on:
Johanna Fischer
;
Johanna Fischer
c)
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Olena Gomonay
;
Olena Gomonay
3
Institut für Physik, Johannes Gutenberg Universität Mainz
, 55128 Mainz, Germany
Search for other works by this author on:
Philipp Schwenke
;
Philipp Schwenke
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Matthias Althammer
;
Matthias Althammer
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Hans Huebl
;
Hans Huebl
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
4
Munich Center for Quantum Science and Technology (MCQST)
, 80799 Munich, Germany
Search for other works by this author on:
Rudolf Gross
Rudolf Gross
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
4
Munich Center for Quantum Science and Technology (MCQST)
, 80799 Munich, Germany
Search for other works by this author on:
a)Author to whom correspondence should be addressed: [email protected]
b)
Electronic mail: [email protected]
c)
Present address: Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France.
Note: This paper is part of the special topic on Antiferromagnetic Spintronics.
J. Appl. Phys. 127, 243902 (2020)
Article history
Received:
March 31 2020
Accepted:
June 06 2020
Citation
Stephan Geprägs, Matthias Opel, Johanna Fischer, Olena Gomonay, Philipp Schwenke, Matthias Althammer, Hans Huebl, Rudolf Gross; Spin Hall magnetoresistance in antiferromagnetic insulators. J. Appl. Phys. 28 June 2020; 127 (24): 243902. https://doi.org/10.1063/5.0009529
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.
Related Content
Magnetoresistance effects in Pt / EuO 1 − x
Appl. Phys. Lett. (May 2020)
Role of interface quality for the spin Hall magnetoresistance in nickel ferrite thin films with bulk-like magnetic properties
Appl. Phys. Lett. (August 2019)
Impact of the interface quality of Pt/YIG(111) hybrids on their spin Hall magnetoresistance
Appl. Phys. Lett. (January 2017)
Quantifying the spin mixing conductance of EuO/W heterostructures by spin Hall magnetoresistance experiments
Appl. Phys. Lett. (May 2021)
Non-local magnetoresistance in YIG/Pt nanostructures
Appl. Phys. Lett. (October 2015)