Antiferromagnetic materials promise improved performance for spintronic applications as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators αFe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy-metal top electrode. While rotating an external magnetic field in three orthogonal planes, we record the longitudinal and the transverse resistivities of Pt and observe characteristic resistivity modulations consistent with the SMR effect. We analyze both their amplitude and phase and compare the data to the results from a prototypical collinear ferrimagnetic Y3Fe5O12/Pt bilayer. The observed magnetic field dependence is explained in a comprehensive model, based on two magnetic sublattices and taking into account magnetic field-induced modifications of the domain structure. Our results show that the SMR allows us to understand the spin configuration and to investigate magnetoelastic effects in antiferromagnetic multi-domain materials. Furthermore, in αFe2O3/Pt bilayers, we find an unexpectedly large SMR amplitude of 2.5×103, twice as high as for prototype Y3Fe5O12/Pt bilayers, making the system particularly interesting for room-temperature antiferromagnetic spintronic applications.

1.
X.
Marti
,
I.
Fina
,
C.
Frontera
,
J.
Liu
,
P.
Wadley
,
Q.
He
,
R. J.
Paull
,
J. D.
Clarkson
,
J.
Kudrnovský
,
I.
Turek
,
J.
Kuneš
,
D.
Yi
,
J.-H.
Chu
,
C. T.
Nelson
,
L.
You
,
E.
Arenholz
,
S.
Salahuddin
,
J.
Fontcuberta
,
T.
Jungwirth
, and
R.
Ramesh
, “
Room-temperature antiferromagnetic memory resistor
,”
Nat. Mater.
13
,
367
374
(
2014
).
2.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronics
,”
Nat. Nano
11
,
231
241
(
2016
).
3.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
4.
T.
Satoh
,
R.
Iida
,
T.
Higuchi
,
M.
Fiebig
, and
T.
Shimura
, “
Writing and reading of an arbitrary optical polarization state in an antiferromagnet
,”
Nat. Photonics
9
,
25
29
(
2015
).
5.
K.
Olejník
,
T.
Seifert
,
Z.
Kašpar
,
V.
Novák
,
P.
Wadley
,
R. P.
Campion
,
M.
Baumgartner
,
P.
Gambardella
,
P.
Němec
,
J.
Wunderlich
,
J.
Sinova
,
P.
Kužel
,
M.
Müller
,
T.
Kampfrath
, and
T.
Jungwirth
, “
Terahertz electrical writing speed in an antiferromagnetic memory
,”
Sci. Adv.
4
,
eaar3566
(
2018
).
6.
M.
Althammer
, “
Pure spin currents in magnetically ordered insulator/normal metal heterostructures
,”
J. Phys. D Appl. Phys.
51
,
313001
(
2018
).
7.
K.
Ando
,
S.
Takahashi
,
K.
Harii
,
K.
Sasage
,
J.
Ieda
,
S.
Maekawa
, and
E.
Saitoh
, “
Electric manipulation of spin relaxation using the spin Hall effect
,”
Phys. Rev. Lett.
101
,
036601
(
2008
).
8.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
193
(
2011
).
9.
X.
Jia
,
K.
Liu
,
K.
Xia
, and
G. E. W.
Bauer
, “
Spin transfer torque on magnetic insulators
,”
Europhys. Lett.
96
,
17005
(
2011
).
10.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Spin-torque switching with the giant spin Hall effect of tantalum
,”
Science
336
,
555
558
(
2012
).
11.
P.
Wadley
,
B.
Howells
,
J.
Železný
,
C.
Andrews
,
V.
Hills
,
R. P.
Campion
,
V.
Novák
,
K.
Olejník
,
F.
Maccherozzi
,
S. S.
Dhesi
,
S. Y.
Martin
,
T.
Wagner
,
J.
Wunderlich
,
F.
Freimuth
,
Y.
Mokrousov
,
J.
Kuneš
,
J. S.
Chauhan
,
M. J.
Grzybowski
,
A. W.
Rushforth
,
K. W.
Edmonds
,
B. L.
Gallagher
, and
T.
Jungwirth
, “
Electrical switching of an antiferromagnet
,”
Science
351
,
587
590
(
2016
).
12.
T.
Matalla-Wagner
,
M.-F.
Rath
,
D.
Graulich
,
J.-M.
Schmalhorst
,
G.
Reiss
, and
M.
Meinert
, “
Electrical Néel-order switching in magnetron-sputtered CuMnAs thin films
,”
Phys. Rev. Appl.
12
,
064003
(
2019
).
13.
L.
Baldrati
,
O.
Gomonay
,
A.
Ross
,
M.
Filianina
,
R.
Lebrun
,
R.
Ramos
,
C.
Leveille
,
F.
Fuhrmann
,
T. R.
Forrest
,
F.
Maccherozzi
,
S.
Valencia
,
F.
Kronast
,
E.
Saitoh
,
J.
Sinova
, and
M.
Kläui
, “
Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging
,”
Phys. Rev. Lett.
123
,
177201
(
2019
).
14.
Y.
Tserkovnyak
,
A.
Brataas
, and
G. E. W.
Bauer
, “
Spin pumping and magnetization dynamics in metallic multilayers
,”
Phys. Rev. B
66
,
224403
(
2002
).
15.
O.
Mosendz
,
J. E.
Pearson
,
F. Y.
Fradin
,
G. E. W.
Bauer
,
S. D.
Bader
, and
A.
Hoffmann
, “
Quantifying spin Hall angles from spin pumping: Experiments and theory
,”
Phys. Rev. Lett.
104
,
046601
(
2010
).
16.
K.
Ando
,
Y.
Kajiwara
,
K.
Sasage
,
K.
Uchida
, and
E.
Saitoh
, “
Inverse spin-Hall effect induced by spin pumping in various metals
,”
IEEE Trans. Magn.
46
,
3694
3696
(
2010
).
17.
B.
Heinrich
,
C.
Burrowes
,
E.
Montoya
,
B.
Kardasz
,
E.
Girt
,
Y.-Y.
Song
,
Y.
Sun
, and
M.
Wu
, “
Spin pumping at the magnetic insulator (YiG)/normal metal (Au) interfaces
,”
Phys. Rev. Lett.
107
,
066604
(
2011
).
18.
C.
Hahn
,
G.
de Loubens
,
M.
Viret
,
O.
Klein
,
V. V.
Naletov
, and
J.
Ben Youssef
, “
Detection of microwave spin pumping using the inverse spin Hall effect
,”
Phys. Rev. Lett.
111
,
217204
(
2013
).
19.
H.
Jiao
and
G. E. W.
Bauer
, “
Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect
,”
Phys. Rev. Lett.
110
,
217602
(
2013
).
20.
K.
Uchida
,
S.
Takahashi
,
K.
Harii
,
J.
Ieda
,
W.
Koshibae
,
K.
Ando
,
S.
Maekawa
, and
E.
Saitoh
, “
Observation of the spin Seebeck effect
,”
Nature
455
,
778
781
(
2008
).
21.
J.
Xiao
,
G. E. W.
Bauer
,
K.-C.
Uchida
,
E.
Saitoh
, and
S.
Maekawa
, “
Theory of magnon-driven spin Seebeck effect
,”
Phys. Rev. B
81
,
214418
(
2010
).
22.
G. E. W.
Bauer
,
E.
Saitoh
, and
B. J.
van Wees
, “
Spin caloritronics
,”
Nat. Mater.
11
,
391
399
(
2012
).
23.
J. E.
Hirsch
, “
Spin Hall effect
,”
Phys. Rev. Lett.
83
,
1834
1837
(
1999
).
24.
M.
Coll
,
J.
Fontcuberta
,
M.
Althammer
,
M.
Bibes
,
H.
Boschker
,
A.
Calleja
,
G.
Cheng
,
M.
Cuoco
,
R.
Dittmann
,
B.
Dkhil
,
I. E.
Baggari
,
M.
Fanciulli
,
I.
Fina
,
E.
Fortunato
,
C.
Frontera
,
S.
Fujita
,
V.
Garcia
,
S.
Goennenwein
,
C.-G.
Granqvist
,
J.
Grollier
,
R.
Gross
,
A.
Hagfeldt
,
G.
Herranz
,
K.
Hono
,
E.
Houwman
,
M.
Huijben
,
A.
Kalaboukhov
,
D.
Keeble
,
G.
Koster
,
L.
Kourkoutis
,
J.
Levy
,
M.
Lira-Cantu
,
J.
MacManus-Driscoll
,
J.
Mannhart
,
R.
Martins
,
S.
Menzel
,
T.
Mikolajick
,
M.
Napari
,
M.
Nguyen
,
G.
Niklasson
,
C.
Paillard
,
S.
Panigrahi
,
G.
Rijnders
,
F.
Sánchez
,
P.
Sanchis
,
S.
Sanna
,
D.
Schlom
,
U.
Schroeder
,
K.
Shen
,
A.
Siemon
,
M.
Spreitzer
,
H.
Sukegawa
,
R.
Tamayo
,
J.
van den Brink
,
N.
Pryds
, and
F. M.
Granozio
, “
Towards oxide electronics: A roadmap
,”
Appl. Surf. Sci.
482
,
1
93
(
2019
).
25.
O.
Gomonay
,
V.
Baltz
,
A.
Brataas
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spin textures and dynamics
,”
Nat. Phys.
14
,
213
216
(
2018
).
26.
H.
Nakayama
,
M.
Althammer
,
Y.-T.
Chen
,
K.
Uchida
,
Y.
Kajiwara
,
D.
Kikuchi
,
T.
Ohtani
,
S.
Geprägs
,
M.
Opel
,
S.
Takahashi
,
R.
Gross
,
G. E. W.
Bauer
,
S. T. B.
Goennenwein
, and
E.
Saitoh
, “
Spin Hall magnetoresistance induced by a nonequilibrium proximity effect
,”
Phys. Rev. Lett.
110
,
206601
(
2013
).
27.
M.
Althammer
,
S.
Meyer
,
H.
Nakayama
,
M.
Schreier
,
S.
Altmannshofer
,
M.
Weiler
,
H.
Huebl
,
S.
Geprägs
,
M.
Opel
,
R.
Gross
,
D.
Meier
,
C.
Klewe
,
T.
Kuschel
,
J.-M.
Schmalhorst
,
G.
Reiss
,
L.
Shen
,
A.
Gupta
,
Y.-T.
Chen
,
G. E. W.
Bauer
,
E.
Saitoh
, and
S. T. B.
Goennenwein
, “
Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids
,”
Phys. Rev. B
87
,
224401
(
2013
).
28.
Y.-T.
Chen
,
S.
Takahashi
,
H.
Nakayama
,
M.
Althammer
,
S. T. B.
Goennenwein
,
E.
Saitoh
, and
G. E. W.
Bauer
, “
Theory of spin Hall magnetoresistance
,”
Phys. Rev. B
87
,
144411
(
2013
).
29.
J.
Fischer
,
O.
Gomonay
,
R.
Schlitz
,
K.
Ganzhorn
,
N.
Vlietstra
,
M.
Althammer
,
H.
Huebl
,
M.
Opel
,
R.
Gross
,
S. T. B.
Goennenwein
, and
S.
Geprägs
, “
Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures
,”
Phys. Rev. B
97
,
014417
(
2018
).
30.
J.
Fischer
,
M.
Althammer
,
N.
Vlietstra
,
H.
Huebl
,
S. T.
Goennenwein
,
R.
Gross
,
S.
Geprägs
, and
M.
Opel
, “
Large spin Hall magnetoresistance in antiferromagnetic αFe2O3/Pt heterostructures
,”
Phys. Rev. Appl.
13
,
014019
(
2020
).
31.
N.
Vlietstra
,
J.
Shan
,
V.
Castel
,
B. J.
van Wees
, and
J.
Ben Youssef
, “
Spin-Hall magnetoresistance in platinum on yttrium iron garnet: Dependence on platinum thickness and in-plane/out-of-plane magnetization
,”
Phys. Rev. B
87
,
184421
(
2013
).
32.
C.
Hahn
,
G.
de Loubens
,
O.
Klein
,
M.
Viret
,
V. V.
Naletov
, and
J.
Ben Youssef
, “
Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta
,”
Phys. Rev. B
87
,
174417
(
2013
).
33.
S. R.
Marmion
,
M.
Ali
,
M.
McLaren
,
D. A.
Williams
, and
B. J.
Hickey
, “
Temperature dependence of spin Hall magnetoresistance in thin YIG/Pt films
,”
Phys. Rev. B
89
,
220404
(
2014
).
34.
S.
Meyer
,
M.
Althammer
,
S.
Geprägs
,
M.
Opel
,
R.
Gross
, and
S. T. B.
Goennenwein
, “
Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements
,”
Appl. Phys. Lett.
104
,
242411
(
2014
).
35.
M.
Isasa
,
A.
Bedoya-Pinto
,
S.
Vélez
,
F.
Golmar
,
F.
Sánchez
,
L. E.
Hueso
,
J.
Fontcuberta
, and
F.
Casanova
, “
Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects
,”
Appl. Phys. Lett.
105
,
142402
(
2014
).
36.
M.
Aldosary
,
J.
Li
,
C.
Tang
,
Y.
Xu
,
J.-G.
Zheng
,
K. N.
Bozhilov
, and
J.
Shi
, “
Platinum/yttrium iron garnet inverted structures for spin current transport
,”
Appl. Phys. Lett.
108
,
242401
(
2016
).
37.
K.
Ganzhorn
,
J.
Barker
,
R.
Schlitz
,
B. A.
Piot
,
K.
Ollefs
,
F.
Guillou
,
F.
Wilhelm
,
A.
Rogalev
,
M.
Opel
,
M.
Althammer
,
S.
Geprägs
,
H.
Huebl
,
R.
Gross
,
G. E. W.
Bauer
, and
S. T. B.
Goennenwein
, “
Spin Hall magnetoresistance in a canted ferrimagnet
,”
Phys. Rev. B
94
,
094401
(
2016
).
38.
G. R.
Hoogeboom
,
A.
Aqeel
,
T.
Kuschel
,
T. T. M.
Palstra
, and
B. J.
van Wees
, “
Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet NiO
,”
Appl. Phys. Lett.
111
,
052409
(
2017
).
39.
L.
Baldrati
,
A.
Ross
,
T.
Niizeki
,
C.
Schneider
,
R.
Ramos
,
J.
Cramer
,
O.
Gomonay
,
M.
Filianina
,
T.
Savchenko
,
D.
Heinze
,
A.
Kleibert
,
E.
Saitoh
,
J.
Sinova
, and
M.
Kläui
, “
Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films
,”
Phys. Rev. B
98
,
024422
(
2018
).
40.
Y.
Ji
,
J.
Miao
,
Y. M.
Zhu
,
K. K.
Meng
,
X. G.
Xu
,
J. K.
Chen
,
Y.
Wu
, and
Y.
Jiang
, “
Negative spin Hall magnetoresistance in antiferromagnetic Cr2O3/Ta bilayer at low temperature region
,”
Appl. Phys. Lett.
112
,
232404
(
2018
).
41.
S.
DuttaGupta
,
R.
Itoh
,
S.
Fukami
, and
H.
Ohno
, “
Angle dependent magnetoresistance in heterostructures with antiferromagnetic and non-magnetic metals
,”
Appl. Phys. Lett.
113
,
202404
(
2018
).
42.
M.
Althammer
,
A. V.
Singh
,
T.
Wimmer
,
Z.
Galazka
,
H.
Huebl
,
M.
Opel
,
R.
Gross
, and
A.
Gupta
, “
Role of interface quality for the spin Hall magnetoresistance in nickel ferrite thin films with bulk-like magnetic properties
,”
Appl. Phys. Lett.
115
,
092403
(
2019
).
43.
Y.
Cheng
,
S.
Yu
,
A. S.
Ahmed
,
M.
Zhu
,
Y.
Rao
,
M.
Ghazisaeidi
,
J.
Hwang
, and
F.
Yang
, “
Anisotropic magnetoresistance and nontrivial spin Hall magnetoresistance in Pt/αFe2O3 bilayers
,”
Phys. Rev. B
100
,
220408
(
2019
).
44.
S.
Geprägs
,
S.
Meyer
,
S.
Altmannshofer
,
M.
Opel
,
F.
Wilhelm
,
A.
Rogalev
,
R.
Gross
, and
S. T. B.
Goennenwein
, “
Investigation of induced pt magnetic polarization in Pt/Y3Fe5O12 bilayers
,”
Appl. Phys. Lett.
101
,
262407
(
2012
).
45.
X.
Liang
,
Y.
Zhu
,
B.
Peng
,
L.
Deng
,
J.
Xie
,
H.
Lu
,
M.
Wu
, and
L.
Bi
, “
Influence of interface structure on magnetic proximity effect in Pt/Y3Fe5O12 heterostructures
,”
ACS Appl. Mater. Interfaces
8
,
8175
8183
(
2016
).
46.
H. B.
Vasili
,
M.
Gamino
,
J.
Gàzquez
,
F.
Sánchez
,
M.
Valvidares
,
P.
Gargiani
,
E.
Pellegrin
, and
J.
Fontcuberta
, “
Magnetoresistance in hybrid Pt/CoFe2O4 bilayers controlled by competing spin accumulation and interfacial chemical reconstruction
,”
ACS Appl. Mater. Interfaces
10
,
12031
12041
(
2018
).
47.
M.
D’yakonov
and
V.
Perel
,
JETP Lett.
13
,
467
(
1971
).
48.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
, “
Observation of the spin Hall effect in semiconductors
,”
Science
306
,
1910
1913
(
2004
).
49.
B.-W.
Dong
,
L.
Baldrati
,
C.
Schneider
,
T.
Niizeki
,
R.
Ramos
,
A.
Ross
,
J.
Cramer
,
E.
Saitoh
, and
M.
Kläui
, “
Antiferromagnetic NiO thickness dependent sign of the spin Hall magnetoresistance in γFe2O3/NiO/Pt epitaxial stacks
,”
Appl. Phys. Lett.
114
,
102405
(
2019
).
50.
R.
Lebrun
,
A.
Ross
,
O.
Gomonay
,
S. A.
Bender
,
L.
Baldrati
,
F.
Kronast
,
A.
Qaiumzadeh
,
J.
Sinova
,
A.
Brataas
,
R. A.
Duine
, and
M.
Kläui
, “
Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a spin-Hall magnetoresistance probe
,”
Commun. Phys.
2
,
50
(
2019
).
51.
A.
Aqeel
,
N.
Vlietstra
,
A.
Roy
,
M.
Mostovoy
,
B. J.
van Wees
, and
T. T. M.
Palstra
, “
Electrical detection of spiral spin structures in Pt/Cu2OSeO3 heterostructures
,”
Phys. Rev. B
94
,
134418
(
2016
).
52.
M.
Lammel
,
R.
Schlitz
,
K.
Geishendorf
,
D.
Makarov
,
T.
Kosub
,
S.
Fabretti
,
H.
Reichlova
,
R.
Huebner
,
K.
Nielsch
,
A.
Thomas
, and
S. T. B.
Goennenwein
, “
Spin Hall magnetoresistance in heterostructures consisting of noncrystalline paramagnetic YIG and Pt
,”
Appl. Phys. Lett.
114
,
252402
(
2019
).
53.
R.
Schlitz
,
T.
Kosub
,
A.
Thomas
,
S.
Fabretti
,
K.
Nielsch
,
D.
Makarov
, and
S. T. B.
Goennenwein
, “
Evolution of the spin Hall magnetoresistance in Cr2O3/Pt bilayers close to the Néel temperature
,”
Appl. Phys. Lett.
112
,
132401
(
2018
).
54.
F. J.
Morin
, “
Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium
,”
Phys. Rev.
78
,
819
820
(
1950
).
55.
C. G.
Shull
,
W. A.
Strauser
, and
E. O.
Wollan
, “
Neutron diffraction by paramagnetic and antiferromagnetic substances
,”
Phys. Rev.
83
,
333
345
(
1951
).
56.
M.
Coey
,
Magnetism and Magnetic Materials
(
Cambridge University Press
,
2010
).
57.
G.
Srinivasan
and
M. S.
Seehra
, “
Magnetic susceptibilities, their temperature variation, and exchange constants of NiO
,”
Phys. Rev. B
29
,
6295
6298
(
1984
).
58.
W. L.
Roth
, “
Magnetic structures of MnO, FeO, CoO, and NiO
,”
Phys. Rev.
110
,
1333
1341
(
1958
).
59.
M. T.
Hutchings
and
E. J.
Samuelsen
, “
Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties
,”
Phys. Rev. B
6
,
3447
3461
(
1972
).
60.
R.
Nathans
,
S. J.
Pickart
,
H. A.
Alperin
, and
P. J.
Brown
, “
Polarized-neutron study of hematite
,”
Phys. Rev.
136
,
A1641
A1647
(
1964
).
61.
J. C.
Marmeggi
,
D.
Hohlwein
, and
E. F.
Bertaut
, “
Magnetic neutron laue diffraction study of the domain distribution in αFe2O3
,”
Phys. Status Solidi A
39
,
57
64
(
1977
).
62.
M.
Opel
,
S.
Geprägs
,
M.
Althammer
,
T.
Brenninger
, and
R.
Gross
, “
Laser molecular beam epitaxy of ZnO thin films and heterostructures
,”
J. Phys. D Appl. Phys.
47
,
034002
(
2014
).
63.
H.
Gomonay
and
V. M.
Loktev
, “
Magnetostriction and magnetoelastic domains in antiferromagnets
,”
J. Phys. Condens. Matter
14
,
3959
(
2002
).
64.
E. V.
Gomonay
and
V. M.
Loktev
, “
On the theory of the formation of equilibrium domain structure in antiferromagnets
,”
Low Temp. Phys.
30
,
804
814
(
2004
).
65.
R. A.
Voskanyan
,
R. Z.
Levitin
, and
V. A.
Shchurov
, “
Magnetostriction of a hematite monocrystal in fields up to 150kOe
,”
Sov. Phys. JETP
27
,
423
(
1968
).
66.
I.
Gross
,
W.
Akhtar
,
V.
Garcia
,
L. J.
Martínez
,
S.
Chouaieb
,
K.
Garcia
,
C.
Carrétéro
,
A.
Barthélémy
,
P.
Appel
,
P.
Maletinsky
,
J.-V.
Kim
,
J. Y.
Chauleau
,
N.
Jaouen
,
M.
Viret
,
M.
Bibes
,
S.
Fusil
, and
V.
Jacques
, “
Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
,”
Nature
549
,
252
256
(
2017
).
You do not currently have access to this content.