In this work, we thoroughly investigate the shape, size, and location of the photonic nanojets (PNJs) generated from the illuminated dome lens. The silk fiber is directly extracted from the cellar spider and used to form the dome lens by its liquid-collecting ability. The solidified dielectric dome lenses with different dimensions are obtained by using ultraviolet curing. Numerical and experimental results show that the long PNJs are strongly modulated by the dimension of the dome lens. The optimal PNJ beam shaping is achieved by using a mesoscale dielectric dome lens. The PNJ with a long focal length and a narrow waist could be used to scan over a target for large-area imaging. The silk fiber with a dome lens is especially useful for bio-photonic applications by combining its biocompatibility and flexibility.

1.
Z.
Chen
,
A.
Taflove
, and
V.
Backman
, “
Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique
,”
Opt. Express
12
,
1214
1220
(
2004
).
2.
X.
Li
,
Z.
Chen
,
A.
Taflove
, and
V.
Backman
, “
Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets
,”
Opt. Express
13
,
526
533
(
2005
).
3.
P.
Ferrand
,
J.
Wenger
,
A.
Devilez
,
M.
Pianta
,
B.
Stout
,
N.
Bonod
,
E.
Popov
, and
H.
Rigneault
, “
Direct imaging of photonic nanojets
,”
Opt. Express
16
,
6930
6940
(
2008
).
4.
M.-S.
Kim
,
T.
Scharf
,
S.
Mühlig
,
C.
Rockstuhl
, and
H. P.
Herzig
, “
Engineering photonic nanojets
,”
Opt. Express
19
,
10206
10220
(
2011
).
5.
C.-Y.
Liu
and
C.-J.
Chen
, “
Characterization of photonic nanojets in dielectric microdisks
,”
Physica E
73
,
226
234
(
2015
).
6.
L.
Chen
,
Y.
Zhou
,
Y.
Li
, and
M.
Hong
, “
Microsphere enhanced optical imaging and patterning: From physics to applications
,”
Appl. Phys. Rev.
6
,
021304
(
2019
).
7.
F.
Wang
,
H. S. S.
Lai
,
L.
Liu
,
P.
Li
,
H.
Yu
,
Z.
Liu
,
Y.
Wang
, and
W.
Li
, “
Super-resolution endoscopy for real-time wide-field imaging
,”
Opt. Express
23
,
16803
16811
(
2015
).
8.
B.
Born
,
S.
Geoffroy-Gagnon
,
J.
Krupa
,
I.
Hristovski
,
C.
Collier
, and
J.
Holzman
, “
Ultrafast all-optical switching via subdiffractional photonic nanojets and select semiconductor nanoparticles
,”
ACS Photonics
3
,
1095
1101
(
2016
).
9.
A.
Bonakdar
,
M.
Rezaei
,
E.
Dexheimer
, and
H.
Mohseni
, “
High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography
,”
Nanotechnology
27
,
035301
(
2016
).
10.
D.
McCloskey
,
J. J.
Wang
, and
J. F.
Donegan
, “
Low divergence photonic nanojets from Si3N4 microdisks
,”
Opt. Express
20
,
128
140
(
2012
).
11.
L.
Han
,
Y.
Han
,
J.
Wang
, and
Z.
Cui
, “
Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam
,”
J. Opt. Soc. Am. A
31
,
1946
1955
(
2014
).
12.
C. Y.
Liu
and
F. C.
Lin
, “
Geometric effect on photonic nanojet generated by dielectric microcylinders with non-cylindrical cross-sections
,”
Opt. Commun.
380
,
287
296
(
2016
).
13.
Y. E.
Geints
,
A. A.
Zemlyanov
, and
E. K.
Panina
, “
Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles
,”
J. Opt. Soc. Am. B
28
,
1825
1830
(
2011
).
14.
Y.
Shen
,
L.
Wang
, and
J. T.
Shen
, “
Ultralong photonic nanojet formed by a two-layer dielectric microsphere
,”
Opt. Lett.
39
,
4120
4123
(
2014
).
15.
C. Y.
Liu
and
K. L.
Hsiao
, “
Direct imaging of optimal photonic nanojets from core-shell microcylinders
,”
Opt. Lett.
40
,
5303
5306
(
2015
).
16.
Y. E.
Geints
,
A. A.
Zemlyanov
, and
E. K.
Panina
, “
Microaxicon-generated photonic nanojets
,”
J. Opt. Soc. Am. B
32
,
1570
1574
(
2015
).
17.
S.
Degtyarev
,
A.
Porfirev
, and
S. N.
Khonina
, “
Photonic nanohelix generated by a binary spiral axicon
,”
Appl. Opt.
55
,
B44
B48
(
2016
).
18.
V.
Pacheco-Peña
,
M.
Beruete
,
I.
Minin
, and
O.
Minin
, “
Terajets produced by dielectric cuboids
,”
Appl. Phys. Lett.
105
,
084102
(
2014
).
19.
I. V.
Minin
,
O. V.
Minin
,
V.
Pacheco-Peña
, and
M.
Beruete
, “
All-dielectric periodic terajet waveguide using an array of coupled cuboids
,”
Appl. Phys. Lett.
106
,
254102
(
2015
).
20.
M.
Wu
,
R.
Chen
,
J.
Ling
,
Z.
Chen
,
X.
Chen
,
R.
Ji
, and
M.
Hong
, “
Creation of a longitudinally polarized photonic nanojet via an engineered microsphere
,”
Opt. Lett.
42
,
1444
1447
(
2017
).
21.
Y.
Zhou
,
H.
Gao
,
J.
Teng
,
X.
Luo
, and
M.
Hong
, “
Orbital angular momentum generation via a spiral phase microsphere
,”
Opt. Lett.
43
,
34
37
(
2018
).
22.
F. G.
Omenetto
and
D. L.
Kaplan
, “
A new route for silk
,”
Nat. Photonics
2
,
641
643
(
2008
).
23.
Y.
Zheng
,
H.
Bai
,
Z.
Huang
,
X.
Tian
,
F. Q.
Nie
,
Y.
Zhao
,
J.
Zhai
, and
L.
Jiang
, “
Directional water collection on wetted spider silk
,”
Nature
463
,
640
643
(
2010
).
24.
A.
Rising
and
J.
Johansson
, “
Toward spinning artificial spider silk
,”
Nat. Chem. Biol.
11
,
309
315
(
2015
).
25.
D.
Little
and
D. M.
Kane
, “
Image contrast immersion method for measuring refractive index applied to spider silks
,”
Opt. Express
19
,
19182
19189
(
2011
).
26.
N.
Huby
,
V.
Vié
,
A.
Renault
,
S.
Beaufils
,
T.
Lefèvre
,
F.
Paquet-Mercier
,
M.
Pézolet
, and
B.
Bêche
, “
Native spider silk as a biological optical fiber
,”
Appl. Phys. Lett.
102
,
123702
(
2013
).
27.
M.
Applegate
,
G.
Perotto
,
D. L.
Kaplan
, and
F. G.
Omenetto
, “
Biocompatible silk step-index optical waveguides
,”
Biomed. Opt. Express
6
,
4221
4227
(
2015
).
28.
S.
Kujala
,
A.
Mannila
,
L.
Karvonen
,
K.
Kieu
, and
Z.
Sun
, “
Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties
,”
Sci. Rep.
6
,
22358
(
2016
).
29.
J.
Monks
,
B.
Yan
,
N.
Hawkins
,
F.
Vollrath
, and
Z.
Wang
, “
Spider silk: Mother nature's bio-superlens
,”
Nano Lett.
16
,
5842
5845
(
2016
).
30.
K.
Tow
,
D.
Chow
,
F.
Vollrath
,
I.
Dicaire
,
T.
Gheysens
, and
L.
Thévenaz
, “
Exploring the use of native spider silk as an optical fiber for chemical sensing
,”
J. Lightwave Technol.
36
,
1138
1144
(
2018
).
31.
A.
Taflove
and
S.
Hagness
,
Computational Electrodynamics: The Finite Difference Time Domain Method
(
Artech House
,
1998
).
32.
G. R.
Hadley
, “
Out-of-plane losses of line-defect photonic crystal waveguides
,”
IEEE Photon. Technol. Lett.
14
,
642
644
(
2002
).
33.
L.
Chen
,
Y.
Zhou
,
M.
Wu
, and
M.
Hong
, “
Remote-mode microsphere nano-imaging: New boundaries for optical microscopes
,”
Opto-Electron. Adv.
1
,
170001
(
2018
).
34.
G.
Huszka
and
M. A.
Gijs
, “
Turning a normal microscope into a super-resolution instrument using a scanning microlens array
,”
Sci. Rep.
8
,
601
(
2018
).
35.
A.
Brettin
,
F.
Abolmaali
,
K. F.
Blanchette
,
C. L.
McGinnis
,
Y. E.
Nesmelov
,
N. I.
Limberopoulos
,
D. E.
Walker,
 Jr.
,
I.
Anisimov
,
A.
Urbas
,
L.
Poffo
,
A.
Maslov
, and
V.
Astratov
, “
Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces
,”
Appl. Phys. Lett.
114
,
131101
(
2019
).
36.
T.
Zhang
,
P.
Li
,
H.
Yu
,
F.
Wang
,
X.
Wang
,
T.
Yang
,
W.
Yang
,
W.
Li
,
Y.
Wang
, and
L.
Liu
, “
Fabrication of flexible microlens arrays for parallel super-resolution imaging
,”
Appl. Surf. Sci.
504
,
144375
(
2020
).
37.
L.
Hüser
and
P.
Lehmann
, “
Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements
,”
Appl. Opt.
59
,
1695
1702
(
2020
).
You do not currently have access to this content.