We demonstrate a low-concentrated solar-pumped laser (SPL) with natural sunlight by using an all-inorganic cesium lead halide perovskite (CsPbBrxI3−x) nanocrystal (NC) dispersed in toluene as a sensitizer. The perovskite NCs exhibit substantial advantages for SPL applications because of their broad absorption and narrow photoluminescence (PL) spectra with high quantum yield using inexpensive commercial precursors. We successfully synthesized CsPbBrxI3−x NCs with precisely tuned PL wavelengths from 581 to 612 nm by altering the I/Br ratio to achieve spectral overlap with Nd3+ ions, which have been widely used as a laser medium for SPLs. The measurement results show that the laser output power is highly sensitive to the peak PL wavelength of the NCs, and the highest laser output was obtained at the peak wavelength of 595 nm. Although the synthesized NCs have a wider absorption band, the laser output power obtained was much less than that of an organic dye of rhodamine 6G (R6G). The numerical analyses show that the optimal peak PL wavelength is 10 nm shorter than the absorption peak of Nd3+ ions because of the reflection property of the dichroic mirror coated on the input window. Moreover, we found that the concentration of NCs needs to be optimized in response to the peak PL wavelength. The calculations show that a laser output power 2.7 times greater than that of R6G can be obtained under an optimal peak PL wavelength of 575 nm and a concentration of 24 g/l for the CsPbBrxI3−x NCs.

1.
T.
Hisatomi
and
K.
Domen
, “
Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
,”
Nat. Catal.
2
,
387
399
(
2019
).
2.
D.
Graham-Rowe
, “
Solar-powered lasers
,”
Nat. Photonics
4
,
64
65
(
2010
).
3.
I.
Levchenko
,
K.
Bazaka
,
S.
Mazouffre
, and
S.
Xu
, “
Prospects and physical mechanisms for photonic space propulsion
,”
Nat. Photonics
12
,
649
657
(
2018
).
4.
“Across the universe,”
Nat. Mater.
17,
845
(
2018
).
5.
Y.
Zhao
,
Y.
Sun
,
Y.
He
,
S.
Yu
, and
J.
Dong
, “
Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter
,”
Sci. Rep.
6
,
38044
(
2016
).
6.
Y.
Takeda
,
H.
Iizuka
,
S.
Mizuno
,
K.
Hasegawa
,
T.
Ichikawa
,
H.
Ito
 et al, “
Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064 nm
,”
J. Appl. Phys.
116
,
014501
(
2014
).
7.
D.
Goto
,
H.
Yoshida
,
H.
Suzuki
,
K.
Kisara
, and
K.
Ohashi
, “The overview of jaxa laser energy transmission R&D activities and the orbital experiments concept on ISS-JEM,” in International Conference on Space Optical Systems and Applications (ICSOS) (National Institute of Information and Communications Technology, 2014), Vol. S5-2.
8.
L.
Torres-Soto
and
L.
Summerer
, “Power to survive the lunar night: And SPS application?” in Proceedings of the 59th IAC (International Astronautical Federation, 2008), Vol. IAC-08-C, p. 3.1.2.
9.
Z.
Guan
,
C. M.
Zhao
,
S. H.
Yang
,
Y.
Wang
,
J. Y.
Ke
, and
H. Y.
Zhang
, “
Demonstration of a free-space optical communication system using a solar-pumped laser as signal transmitter
,”
Laser Phys. Lett.
14
,
055804
(
2017
).
10.
T.
Yabe
,
S.
Uchida
,
K.
Ikuta
,
K.
Yoshida
,
C.
Baasandash
,
M. S.
Mohamed
 et al, “
Demonstrated fossil-fuel-free energy cycle using magnesium and laser
,”
Appl. Phys. Lett.
89
,
261107
(
2006
).
11.
M. S.
Mohamed
,
T.
Yabe
,
C.
Baasandash
,
Y.
Sato
,
Y.
Mori
,
L.
Shi-Hua
 et al, “
Laser-induced magnesium production from magnesium oxide using reducing agents
,”
J. Appl. Phys.
104
,
113110
(
2008
).
12.
Z. J.
Kiss
,
H. R.
Lewis
, and
R. C.
Duncan,
 Jr.
, “
Sun pumped continuous optical maser
,”
Appl. Phys. Lett.
2
,
93
94
(
1963
).
13.
S.
Nechayev
and
C.
Rotschild
, “
Detailed balance limit of efficiency of broadband-pumped lasers
,”
Sci. Rep.
7
,
11497
(
2017
).
14.
P. D.
Reusswig
,
S.
Nechayev
,
J. M.
Scherer
,
G. W.
Hwang
,
M. G.
Bawendi
,
M. A.
Baldo
 et al, “
A path to practical solar pumped lasers via radiative energy transfer
,”
Sci. Rep.
5
,
14758
(
2015
).
15.
T. H.
Dinh
,
T.
Ohkubo
,
T.
Yabe
, and
H.
Kuboyama
, “
120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod
,”
Opt. Lett.
37
,
2670
(
2012
).
16.
D.
Liang
and
J.
Almeida
, “
Highly efficient solar-pumped Nd:YAG laser
,”
Opt. Express
19
,
26399
26405
(
2011
).
17.
J.
Almeida
,
D.
Liang
,
E.
Guillot
, and
Y.
Abdel-Hadi
, “
A 40 W CW Nd:YAG solar laser pumped through a heliostat: A parabolic mirror system
,”
Laser Phys.
23
,
065801
(
2013
).
18.
T.
Yabe
,
T.
Ohkubo
,
S.
Uchida
,
K.
Yoshida
,
M.
Nakatsuka
,
T.
Funatsu
 et al, “
High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium
,”
Appl. Phys. Lett.
90
,
261120
(
2007
).
19.
S.
Mizuno
,
H.
Ito
,
K.
Hasegawa
,
T.
Suzuki
, and
Y.
Ohishi
, “
Laser emission from a solar-pumped fiber
,”
Opt. Express
20
,
5891
(
2012
).
20.
W. H.
Press
, “
Theoretical maximum for energy from direct and diffuse sunlight
,”
Nature
264
,
734
735
(
1976
).
21.
R. M.
Swanson
, “
The promise of concentrators
,”
Prog. Photovoltaics Res. Appl.
8
,
93
111
(
2000
).
22.
K.
Jin
and
W.
Zhou
, “
Wireless laser power transmission: A review of recent progress
,”
IEEE Trans. Power Electron.
34
,
3842
3859
(
2019
).
23.
I.
Zhang
,
W.
Fang
,
Q.
Liu
,
J.
Wu
,
P.
Xia
, and
L.
Yang
, “
Distributed laser charging: A wireless power transfer approach
,”
IEEE Internet Things J.
5
,
3853
3864
(
2018
).
24.
T.
Motohiro
,
Y.
Takeda
,
H.
Ito
,
K.
Hasegawa
,
A.
Ikesue
,
T.
Ichikawa
 et al, “
Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles
,”
Jpn. J. Appl. Phys.
56
,
08MA07
(
2017
).
25.
P.
Sprangle
,
B.
Hafizi
,
A.
Ting
, and
T.
Fisher
, “
High-power lasers for directed-energy appliations
,”
Appl. Opt.
54
,
F201
F209
(
2015
).
26.
T.
Masuda
,
M.
Iyoda
,
Y.
Yasumatsu
,
S.
Dottermusch
,
I. A.
Howard
,
B. S.
Richards
 et al, “
A fully planar solar pumped laser based on a luminescent solar collector
,”
Commun. Phys.
3
,
60
(
2020
).
27.
H.
Huang
,
L.
Polavarapu
,
J. A.
Sichert
,
A. S.
Susha
,
A. S.
Urban
, and
A. L.
Rogach
, “
Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications
,”
NPG Asia Mater.
8
,
e328
(
2016
).
28.
D.
Amgar
,
S.
Aharon
, and
L.
Etgar
, “
Inorganic and hybrid organo-metal perovskite nanostructures: Synthesis, properties, and applications
,”
Adv. Funct. Mater.
26
,
8576
8593
(
2016
).
29.
S.
Gonzalez-Carrero
,
R. E.
Galian
, and
J.
Pérez-Prieto
, “
Organic-inorganic and all-inorganic lead halide nanoparticles
,”
Opt. Express
24
,
A285
(
2016
).
30.
X.
Li
,
F.
Cao
,
D.
Yu
,
J.
Chen
,
Z.
Sun
,
Y.
Shen
 et al, “
All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications
,”
Small
13
,
1603996
(
2017
).
31.
F.
Liu
,
Y.
Zhang
,
C.
Ding
,
S.
Kobayashi
,
T.
Izuishi
,
N.
Nakazawa
 et al, “
Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield
,”
ACS Nano
11
,
10373
10383
(
2017
).
32.
F.
Liu
,
C.
Ding
,
Y.
Zhang
,
T. S.
Ripolles
,
T.
Kamisaka
,
T.
Toyoda
 et al, “
Colloidal synthesis of air-stable alloyed CsSn1–xPbxI3 perovskite nanocrystals for use in solar cells
,”
J. Am. Chem. Soc.
139
,
16708
16719
(
2017
).
33.
C.
Ding
,
F.
Liu
,
Y.
Zhang
,
D.
Hirotani
,
X.
Rin
,
S.
Hayase
 et al, “
Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells
,”
Nano Energy
67
,
104267
(
2019
).
34.
T.
Masuda
,
M.
Iyoda
,
Y.
Yasumatsu
, and
M.
Endo
, “
Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry
,”
Opt. Lett.
42
,
3427
3430
(
2017
).
35.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
 et al, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
,
3692
3696
(
2015
).
36.
J.-F.
Bisson
,
M.
Iyoda
,
Y.
Yasumatsu
,
M.
Endo
, and
T.
Masuda
, “
Effect of the thermally excited lower laser level in a neodymium-doped fiber
,”
J. Opt. Soc. Am. B
36
,
736
745
(
2019
).
37.
J.
Oliver
and
F.
Barnes
, “
Rare-gas pumping efficiencies for neodymium lasers
,”
IEEE J. Quantum Electron.
5
,
225
231
(
1969
).
38.
See http://rredc.nrel.gov/solar/spectra/am1.5 for more information about NREL's AM1.5 Standard Dataset.
39.
T.
Masuda
,
M.
Iyoda
,
Y.
Yasumatsu
, and
M.
Endo
, “
Low-loss pigtail reflector for fiber lasers
,”
Rev. Sci. Instrum.
88
,
053112
(
2017
).
40.
C. M.
Iaru
,
J. J.
Geuchies
,
P. M.
Koenraad
,
D.
Vanmaekelbergh
, and
A. Y.
Silov
, “
Strong carrier–phonon coupling in lead halide perovskite nanocrystals
,”
ACS Nano
11
,
11024
11030
(
2017
).
41.
D.
Yang
,
M.
Cao
,
Q.
Zhong
,
P.
Li
,
X.
Zhang
, and
Q.
Zhang
, “
All-inorganic cesium lead halide perovskite nanocrystals: Synthesis, surface engineering and applications
,”
J. Mater. Chem. C
7
,
757
789
(
2019
).
42.
M.
Endo
,
J.-F.
Bisson
, and
T.
Masuda
, “
Monte Carlo simulation of a transversely excited solar-pumped fiber laser
,”
Jpn. J. Appl. Phys.
58
,
112006
(
2019
).
43.
D.
Liang
,
J.
Almeida
,
D.
Garcia
,
B. D.
Tibúrcio
,
E.
Guillot
, and
C. R.
Vistas
, “
Simultaneous solar laser emissions from three Nd:YAG rods within a single pump cavity
,”
Sol. Energy
199
,
192
197
(
2020
).
44.
D.
Liang
,
C. R.
Vistas
,
B. D.
Tibúrcio
, and
J.
Almeida
, “
Solar-pumped Cr:Nd:YAG ceramic laser with 6.7% slope efficiency
,”
Sol. Energy Mater. Sol. Cells
185
,
75
79
(
2018
).
You do not currently have access to this content.