Titanium nitride (TiN) is a known superconducting material that is attractive for use as passive components in superconducting circuits for both conventional and quantum information devices. In contrast to conventional synthesis techniques, here, plasma-assisted molecular beam epitaxy is reported to produce high-quality TiN on bare silicon wafers. Using a rf-plasma source to crack the nitrogen molecules and a conventional high-temperature effusion cell for titanium, TiN growth is completed under nitrogen-rich conditions. The growth and nucleation is monitored in situ, while the structure and composition are characterized using x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, secondary ion mass spectroscopy, and scanning transmission electron microscopy. The stoichiometric TiN (111) films sit on an amorphous nitride layer with low impurity concentrations. The films superconduct with Tc=5.4 K, and coplanar waveguide resonators are fabricated with a small center width of 6 μm that demonstrate single-photon quality factors approaching 1M and high-power quality factors over 5M without observing saturation.

1.
H.
Paik
,
D. I.
Schuster
,
L. S.
Bishop
,
G.
Kirchmair
,
G.
Catelani
,
A. P.
Sears
,
B. R.
Johnson
,
M. J.
Reagor
,
L.
Frunzio
,
L. I.
Glazman
,
S. M.
Girvin
,
M. H.
Devoret
, and
R. J.
Schoelkopf
, “
Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture
,”
Phys. Rev. Lett.
107
,
240501
(
2011
).
2.
O.
Dial
,
D. T.
McClure
,
S.
Poletto
,
G. A.
Keefe
,
M. B.
Rothwell
,
J. M.
Gambetta
,
D. W.
Abraham
,
J. M.
Chow
, and
M.
Steffen
, “
Bulk and surface loss in superconducting transmon qubits
,”
Supercond. Sci. Technol.
29
,
044001
(
2016
).
3.
M. R.
Vissers
,
J.
Gao
,
D. S.
Wisbey
,
D. A.
Hite
,
C. C.
Tsuei
,
A. D.
Corcoles
,
M.
Steffen
, and
D. P.
Pappas
, “
Low loss superconducting titanium nitride coplanar waveguide resonators
,”
Appl. Phys. Lett.
97
,
232509
(
2010
).
4.
S.
Ohya
,
B.
Chiaro
,
A.
Megrant
,
C.
Neill
,
R.
Barends
,
Y.
Chen
,
J.
Kelly
,
D.
Low
,
J.
Mutus
,
P. J. J.
O. Malley
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
Y.
Yin
,
B. D.
Schultz
,
C. J.
Palmstrøm
,
B. A.
Mazin
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators
,”
Supercond. Sci. Technol.
27
,
015009
(
2014
).
5.
A.
Dunsworth
,
A.
Megrant
,
C.
Quintana
,
Z.
Chen
,
R.
Barends
,
B.
Burkett
,
B.
Foxen
,
Y.
Chen
,
B.
Chiaro
,
A.
Fowler
,
R.
Graff
,
E.
Jeffrey
,
J.
Kelly
,
E.
Lucero
,
J. Y.
Mutus
,
M.
Neeley
,
C.
Neill
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
, and
J. M.
Martinis
, “
Characterization and reduction of capacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits
,”
Appl. Phys. Lett.
111
,
022601
(
2017
).
6.
B. O.
Johansson
,
J. E.
Sundgren
,
J. E.
Greene
,
A.
Rockett
,
S. A.
Barnett
,
B. O.
Johansson
,
J.
Sundgren
, and
J. E.
Greene
, “
Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering growth and properties of single crystal TiN films deposited by reactive magnetron sputtering
,”
J. Vac. Sci. Technol. A
3
,
303
(
1985
).
7.
R.
Chowdhury
,
R.
Vispute
,
K.
Jagannadham
, and
J.
Narayan
, “
Characteristics of titanium nitride films grown by pulsed laser deposition
,”
J. Mater. Res.
11
,
1458
1469
(
1996
).
8.
Y.
Krockenberger
,
S.-I.
Karimoto
,
H.
Yamamoto
, and
K.
Semba
, “
Coherent growth of superconducting TiN thin films by plasma enhanced molecular beam epitaxy
,”
J. Appl. Phys.
112
,
083920
(
2012
).
9.
T.
Konaka
,
M.
Sato
,
H.
Asano
, and
S.
Kubo
, “
Relative permittivity and dielectric loss tangent of substrate materials for high-Tc superconducting film
,”
J. Supercond.
4
,
283
(
1991
).
10.
R.
Chowdhury
,
X.
Chen
, and
J.
Narayan
, “
Pulsed laser deposition of epitaxial Si/TiN/Si (100) heterostructures
,”
Appl. Phys. Lett.
64
,
1236
(
1994
).
11.
R.
Sun
,
K.
Makise
,
W.
Qiu
,
H.
Terai
, and
Z.
Wang
, “
Fabrication of (200)-oriented TiN films on Si (100) substrates by DC magnetron sputtering
,”
IEEE Trans. Appl. Supercond.
25
,
1101204
(
2015
).
12.
K.
Inumaru
,
H.
Okamoto
, and
S.
Yamanaka
, “
Preparation of superconducting epitaxial thin films of transition metal nitrides on silicon wafers by molecular beam epitaxy
,”
J. Cryst. Growth
237
,
2050
2054
(
2002
).
13.
C.
Richardson
,
N.
Siwak
,
J.
Hackley
,
Z.
Keane
,
J.
Robinson
,
B.
Arey
,
I.
Arslan
, and
B.
Palmer
, “
Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators
,”
Supercond. Sci. Technol.
29
,
064003
(
2016
).
14.
H.
Jaim
,
J.
Aguilar
,
B.
Sarabi
,
Y.
Rosen
,
A.
Ramanayaka
,
E.
Lock
,
C.
Richardson
, and
K.
Osborn
, “
Superconducting TiN films sputtered over a large range of substrate DC bias
,”
IEEE Trans. Appl. Supercond.
25
,
1100505
(
2015
).
15.
H. G.
Leduc
,
B.
Bumble
,
P. K.
Day
,
B. H.
Eom
,
J.
Gao
,
S.
Golwala
,
B. A.
Mazin
,
S.
McHugh
,
A.
Merrill
,
D. C.
Moore
,
O.
Noroozian
,
A. D.
Turner
, and
J.
Zmuidzinas
, “
Titanium nitride films for ultrasensitive microresonator detectors
,”
Appl. Phys. Lett.
97
,
102509
(
2010
).
16.
A.
Torgovkin
,
S.
Chaudhuri
,
A.
Ruhtinas
,
M.
Lahtinen
,
T.
Sajavaara
, and
I. J.
Maasilta
, “
High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition
,”
Supercond. Sci. Technol.
31
,
055017
(
2018
).
17.
G.
Koblmueller
,
R.
Averbeck
,
L.
Geelhaar
,
H.
Riechert
,
W.
Hösler
, and
P.
Pongratz
, “
Growth diagram and morphologies of AlN thin films grown by molecular beam epitaxy
,”
J. Appl. Phys.
93
,
9591
9596
(
2003
).
18.
D.
Jaeger
and
J.
Patscheider
, “
A complete and self-consistent evaluation of XPS spectra of TiN
,”
J. Electron Spectros. Relat. Phenomena
185
,
523
534
(
2012
).
19.
N. C.
Saha
and
H. G.
Tompkins
, “
Titanium nitride oxidation chemistry : An x-ray photoelectron spectroscopy study
,”
J. Appl. Phys.
72
,
3072
(
1992
).
20.
M. C.
Biesinger
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
, “
Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn
,”
Appl. Surf. Sci.
257
,
887
898
(
2010
).
21.
M. V.
Kuznetsov
,
J.
Zhuravlev
,
V. A.
Zhilyaev
, and
V. A.
Gubanov
, “
XPS study of the nitrides, oxides and oxynitrides of titanium
,”
J. Electron Spectros. Relat. Phenomena
58
,
1
9
(
1992
).
22.
M. H.
Chan
and
F. H.
Lu
, “
X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures
,”
Thin Solid Films
517
,
5006
5009
(
2009
).
23.
D.
Jaeger
and
J.
Patscheider
, “
Single crystalline oxygen-free titanium nitride by XPS
,”
Surf. Sci. Spectra
20
,
1
8
(
2013
).
24.
M.
Sandberg
,
M. R.
Vissers
,
J. S.
Kline
,
M.
Weides
,
J.
Gao
,
D. S.
Wisbey
, and
D. P.
Pappas
, “
Etch induced microwave losses in titanium nitride superconducting resonators
,”
Appl. Phys. Lett.
100
,
262605
(
2012
).
25.
R.
Barends
,
H. L.
Hortensius
,
T.
Zijlstra
,
J. J.
Baselmans
,
S. J.
Yates
,
J. R.
Gao
, and
T. M.
Klapwijk
, “
Contribution of dielectrics to frequency and noise of NbTiN superconducting resonators
,”
Appl. Phys. Lett.
92
,
223502
(
2008
).
26.
A.
Megrant
,
C.
Neill
,
R.
Barends
,
B.
Chiaro
,
Y.
Chen
,
L.
Feigl
,
J.
Kelly
,
E.
Lucero
,
M.
Mariantoni
,
P. J. J. O.
Malley
,
D.
Sank
,
A.
Vainsencher
, and
J.
Wenner
, “
Planar superconducting resonators with internal quality factors above one million planar superconducting resonators with internal quality factors above one million
,”
Appl. Phys. Lett.
100
,
113510
(
2012
).
27.
M. S.
Khalil
,
M. J. A.
Stoutimore
,
F. C.
Wellstood
, and
K. D.
Osborn
, “
An analysis method for asymmetric resonator transmission applied to superconducting devices
,”
J. Appl. Phys.
111
,
054510
(
2012
).
28.
G.
Calusine
,
A.
Melville
,
W.
Woods
,
R.
Das
,
C.
Stull
,
V.
Bolkhovsky
,
D.
Braje
,
D.
Hover
,
D. K.
Kim
,
X.
Miloshi
,
D.
Rosenberg
,
A.
Sevi
,
J. L.
Yoder
,
E.
Dauler
, and
W. D.
Oliver
, “
Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators
,”
Appl. Phys. Lett.
112
,
062601
(
2018
).
29.
J. M.
Sage
,
V.
Bolkhovsky
,
W. D.
Oliver
,
B.
Turek
, and
P. B.
Welander
, “
Study of loss in superconducting coplanar waveguide resonators
,”
J. Appl. Phys.
109
,
063915
(
2011
).
30.
A.
Bruno
,
G.
de Lange
,
S.
Asaad
,
K. L.
van der Enden
,
N. K.
Langford
, and
L.
DiCarlo
, “
Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates
,”
Appl. Phys. Lett.
106
,
182601
(
2015
).
31.
J.
Zhao
,
E. G.
Garza
,
K.
Lam
, and
C. M.
Jones
, “
Comparison study of physical vapor-deposited and chemical vapor-deposited titanium nitride thin films using X-ray photoelectron spectroscopy
,”
Appl. Surf. Sci.
158
,
246
251
(
2000
).
You do not currently have access to this content.