Thermal control elements, i.e., thermal diodes, switches, and regulators, can control the heat flow in an analogous way in how electronic devices control electrical currents. In particular, a thermal diode allows a larger heat flux in one direction than in the other. This has aroused the interest of researchers working on the thermal management of electronics, refrigeration, and energy conversion. Solid-state thermal diodes are attractive because they are silent, reliable, lightweight, and durable. While some solid-state thermal diodes have been developed at the nano- and microscale, the leap to the macroscale has yet to be made. A macroscale thermal diode would play a crucial role in the future development of applications related to caloric refrigeration and heat pumping. Additionally, the temperature changes of caloric materials (due to the caloric effect) are ideal for testing these thermal devices. This paper aims to numerically evaluate the influence of a macroscopic solid-state thermal diode in a magnetocaloric refrigeration device under transient and quasi-steady-state conditions. Materials with different temperature-dependent properties were analyzed, and the most promising ones were selected for the operating range of a magnetocaloric device (290–296 K). The highest achieved magnetocaloric thermal rectification ratio under transient conditions was up to 295-times higher than with quasi-steady-state operation. This shows that transient operation should be considered for future progress with this technology.

1.
J. S.
Brown
and
P. A.
Domanski
,
Appl. Therm. Eng.
64
,
252
(
2014
).
2.
S.
Qian
,
D.
Nasuta
,
A.
Rhoads
,
Y.
Wang
,
Y.
Geng
,
Y.
Hwang
,
R.
Radermacher
, and
I.
Takeuchi
,
Int. J. Refrig.
62
,
177
(
2016
).
3.
W.
Goetzler
,
R.
Zogg
,
J.
Young
, and
C.
Johnson
,
ASHRAE J.
56
,
12
23
(
2014
).
4.
V.
Franco
,
J. S.
Blázquez
,
J. J.
Ipus
,
J. Y.
Law
,
L. M.
Moreno-Ramírez
, and
A.
Conde
,
Prog. Mater. Sci.
93
,
112
(
2018
).
5.
A.
Kitanovski
,
J.
Tušek
,
U.
Tomc
,
U.
Plaznik
,
M.
Ožbolt
, and
A.
Poredoš
,
Magnetocaloric Energy Conversion
(
Springer
,
Switzerland
,
2015
).
6.
A.
Kitanovski
,
U.
Plaznik
,
U.
Tomc
, and
A.
Poredoš
,
Int. J. Refrig.
57
,
288
(
2015
).
7.
A.
Kitanovski
,
Adv. Energy Mater.
10
,
1903741
(
2020
).
8.
J.
Shi
,
D.
Han
,
Z.
Li
,
L.
Yang
,
S.-G.
Lu
,
Z.
Zhong
,
J.
Chen
,
Q. M.
Zhang
, and
X.
Qian
,
Joule
3
,
1200
(
2019
).
9.
M.
Ožbolt
,
A.
Kitanovski
,
J.
Tušek
, and
A.
Poredoš
,
Int. J. Refrig.
40
,
174
(
2014
).
10.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
, and
C.
Masselli
,
J. Phys. Conf. Ser.
796
,
012019
(
2017
).
11.
E.
Orhan
,
M.
Paridah
,
A.
Moradbak
,
A.
Mohamed
,
F. A. T.
Owolabi
,
M.
Asniza
, and
S. H.
Abdul Khalid
, in
Refrigeration
, edited by
E.
Orhan
(
Intech
,
Rijeka
,
2016
), pp.
19
43
.
12.
A. F.
Bruederlin
,
L.
Bumke
,
H.
Ossmer
,
C.
Chluba
,
E.
Quandt
, and
M.
Kohl
,
Energy Technol.
6
(
8
),
1588
1604
(
2018
).
13.
S.
Qian
,
Y.
Geng
,
Y.
Wang
,
J.
Ling
,
Y.
Hwang
,
R.
Radermacher
,
I.
Takeuchi
, and
J.
Cui
,
Int. J. Refrig.
64
,
1
(
2016
).
14.
P.
Kabirifar
,
A.
Žerovnik
,
Ž.
Ahčin
,
L.
Porenta
,
M.
Brojan
, and
J.
Tušek
,
J. Mech. Eng.
65
,
615
(
2019
).
15.
P.
Lloveras
,
A.
Aznar
,
M.
Barrio
,
P.
Negrier
,
C.
Popescu
,
A.
Planes
,
L.
Mañosa
,
A.
Avramenko
,
N. D.
Mathur
,
X.
Moya
, and
J.
Tamarit
,
Nat. Commun.
10
,
1803
(
2019
).
16.
T. H.
Strassle
,
High Press. Res.
17
,
325
(
2000
).
17.
E.
Stern-Taulats
,
T.
Castán
,
L.
Mañosa
,
A.
Planes
,
N. D.
Mathur
, and
X.
Moya
,
MRS Bull
43
,
295
(
2018
).
18.
T.
Gottschall
,
A.
Gràcia-condal
,
M.
Fries
,
A.
Taubel
,
L.
Pfeuffer
,
L.
Mañosa
,
A.
Planes
,
K. P.
Skokov
, and
O.
Gutfleisch
,
Nat. Mater.
17
,
929
(
2018
).
19.
H.
Ursic
,
V.
Bobnar
,
B.
Malic
,
C.
Filipic
,
M.
Vrabelj
,
S.
Drnovsek
,
Y.
Jo
,
M.
Wencka
, and
Z.
Kutnjak
,
Sci. Rep
.
6
,
26629
(
2016
).
20.
J. A.
Barclay
and
W. A.
Steyert
, U.S. patent US4332135 (
1981
).
21.
U.
Plaznik
,
M.
Vrabelj
,
Z.
Kutnjak
,
B.
Malič
,
B.
Rožič
,
A.
Poredoš
, and
A.
Kitanovski
,
Int. J. Refrig.
98
,
139
(
2019
).
22.
C.
Aprea
,
A.
Greco
, and
A.
Maiorino
,
Energies
12
,
2902
(
2019
).
23.
A.
Kitanovski
and
P. W.
Egolf
,
Int. J. Refrig.
33
,
449
(
2010
).
24.
U. L.
Olsen
,
C. R. H.
Bahl
,
K.
Engelbrecht
,
K. K.
Nielsen
,
Y.
Tasaki
, and
H.
Takahashi
,
Int. J. Refrig.
37
,
194
(
2014
).
25.
D. J.
Silva
,
B. D.
Bordalo
,
A. M.
Pereira
,
J.
Ventura
, and
J. P.
Araújo
,
Appl. Energy
93
,
570
(
2012
).
26.
A.
Basiulis
,
R.
Beach
,
R.
Berry
, and
R.
Verdes
, U.S. patent US4757688 (
1988
).
27.
N.
Mathur
and
A.
Mishchenko
, U.S. patent WO/2006/056809 (
2006
).
28.
R. I.
Epstein
and
K. J.
Malloy
,
J. Appl. Phys.
106
,
064509
(
2009
).
29.
K.
Klinar
and
A.
Kitanovski
,
Renewable Sustainable Energy Rev.
118
,
109571
(
2020
).
30.
A.
Kitanovski
,
K.
Klinar
, and
U.
Tomc
, in ICR2019 Refrigeration Science and Technology Proceedings, 25th IIR International Congress of Refrigeration, edited by V. Minea (International Institute of Refrigeration, IIR, Montreal, 2019), pp. 86–107.
31.
W.
Sato
, in Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE2013 (ASME, San Diego, 2013).
32.
L. M.
Maier
,
T.
Hess
,
O.
Schaefer-Wiesen
,
J.
Woellenstein
, and
K.
Bartholomé
, in Thermag VIII—International Conference on Caloric Cooling (IIR, Darmstadt, 2018), p. 107.
33.
K.
Bartholome
,
A.
Fitger
,
M.
Winkler
, and
O.
Schaefer-Welsen
, Thermag VIII—International Conference on Caloric Cooling (IIR, Darmstadt, 2018), p. 348.
34.
T.
Hess
,
L. M.
Maier
,
P.
Corhan
,
O.
Schäfer-Welsen
,
J.
Wöllenstein
, and
K.
Bartholomé
,
Int. J. Refrig.
103
,
215
(
2019
).
35.
M.
Terraneo
,
M.
Peyrard
, and
G.
Casati
,
Phys. Rev. Lett.
88
,
094302
(
2002
).
36.
D. B.
Go
and
M.
Sen
,
J. Heat Transfer
132
,
124502
(
2010
).
37.
C.
Dames
,
J. Heat Transfer
131
,
061301
(
2009
).
38.
39.
B.
Hu
,
D.
He
,
L.
Yang
, and
Y.
Zhang
,
Phys. Rev. E
74
,
060201(R)
(
2006
).
40.
A. L.
Cottrill
and
M. S.
Strano
,
Adv. Energy Mater.
5
,
1500921
(
2015
).
41.
W.
Kobayashi
,
Y.
Teraoka
, and
I.
Terasaki
,
Appl. Phys. Lett.
95
,
171905
(
2009
).
42.
W.
Kobayashi
,
D.
Sawaki
,
T.
Omura
,
T.
Katsufuji
,
Y.
Moritomo
, and
I.
Terasaki
,
Appl. Phys. Express
5
,
027302
(
2012
).
43.
D.
Sawaki
,
W.
Kobayashi
,
Y.
Moritomo
, and
I.
Terasaki
,
Appl. Phys. Lett.
98
,
081915
(
2011
).
44.
T.
Majdi
,
S.
Pal
, and
I. K.
Puri
,
Int. J. Therm. Sci.
117
,
260
(
2017
).
45.
Y.
Yang
,
H.
Chen
,
H.
Wang
,
N.
Li
, and
L.
Zhang
,
Phys. Rev.
98
,
042131
(
2018
).
46.
T. M.
Shih
,
Z.
Gao
,
Z.
Guo
,
H.
Merlitz
,
P. J.
Pagni
, and
Z.
Chen
,
Sci. Rep.
5
,
12677
(
2015
).
47.
G.
Wehmeyer
,
T.
Yabuki
,
C.
Monachon
,
J.
Wu
, and
C.
Dames
,
Appl. Phys. Rev.
4
,
041304
(
2017
).
48.
M. G.
Naso
,
E.
Vuk
, and
F.
Zullo
,
Int. J. Heat Mass Transfer
143
,
118520
(
2019
).
49.
H.
Sadat
and
V.
Le Dez
,
Mech. Res. Commun.
76
,
48
(
2016
).
50.
C. L.
Gomez-Heredia
,
J. A.
Ramirez-Rincon
,
J.
Ordonez-Miranda
,
O.
Ares
,
J. J.
Alvarado-Gil
,
C.
Champeaux
,
F.
Dumas-Bouchiat
,
Y.
Ezzahri
, and
K.
Joulain
,
Sci. Rep.
8
,
1
(
2018
).
51.
R.
Shrestha
,
Y.
Luan
,
S.
Shin
,
T.
Zhang
,
X.
Luo
,
J. S.
Lundh
,
W.
Gong
,
M. R.
Bockstaller
,
S.
Choi
,
T.
Luo
,
R.
Chen
,
K.
Hippalgaonkar
, and
S.
Shen
,
Sci. Adv.
5
,
eaax3777
(
2019
).
52.
T.
Zhang
and
T.
Luo
,
Small
11
,
4657
(
2015
).
53.
K.
Hirata
,
T.
Matsunaga
,
S.
Singh
,
M.
Matsunami
, and
T.
Takeuchi
,
J. Electron. Mater.
49
,
2895
(
2020
).
54.
A. L.
Cottrill
,
S.
Wang
,
A. T.
Liu
,
W. J.
Wang
, and
M. S.
Strano
,
Adv. Energy Mater.
8
,
1702692
(
2018
).
55.
E.
Pallecchi
,
Z.
Chen
,
G. E.
Fernandes
,
Y.
Wan
,
J. H.
Kim
, and
J.
Xu
,
Mater. Horizons
2
,
125
(
2015
).
56.
F. A.
Herrera
,
T.
Luo
, and
D. B.
Go
,
J. Heat Transfer
139
,
091301
(
2017
).
57.
N. A.
Roberts
and
D. G.
Walker
,
Int. J. Therm. Sci.
50
,
648
(
2011
).
58.
K.
Klinar
,
U.
Tomc
,
B.
Jelenc
,
S.
Nosan
, and
A.
Kitanovski
,
Appl. Energy
236
,
1062
(
2019
).
59.
J. A.
Leon-Gil
,
J. J.
Martinez-Flores
, and
J.
Alvarez-Quintana
,
J. Mater. Sci.
54
,
3211
(
2019
).
60.
C.
Vélez
,
M.
Khayet
,
J. M.
Ortiz de Zárate
,
Appl. Energy
143
,
383
(
2015
).

Supplementary Material

You do not currently have access to this content.