Using density functional theory, a detailed computational study is performed to explore the structural and electronic properties of a black phosphorene monolayer, bilayer, and trilayer under a uniaxial strain along the armchair (b axis) and zigzag (a axis) directions. In the case of a monolayer black phosphorene, it is found that strain along the armchair direction slightly affects the a lattice parameter and the puckering height (Δ). Along the zigzag direction, however, variation of the a lattice parameter is compensated by both the a and b lattice variations while the parameter Δ remains unaffected. In the case of bilayer and trilayer black phosphorene, a similar behavior is observed where the layer-spacing “d” acts as an additional degree of liberty for strain compensation. In terms of electronic properties, strain along the armchair and zigzag directions changes the nature of the Γ point in the bandgap from a direct to an indirect electronic transition as a function of the strain value. In the strain range from −14% to +6%, all black phosphorene structures behave similarly to classical semiconductors. However, the size and strain combined effect significantly affects the Fermi energy position. Around 0% strain, all black phosphorene structures are of p-type, while they switch to an n-type semiconductor in the range of strain values from +2% up to +14%. This p-type to n-type transition may have a major technological impact in fields where mono- and hetero-junctions are considered.

1.
R. S.
Jacobsen
,
K. N.
Andersen
,
P. I.
Borel
,
J.
Fage-Pedersen
,
L. H.
Frandsen
,
O.
Hansen
,
M.
Kristensen
,
A. V.
Lavrinenko
,
G.
Moulin
,
H.
Ou
,
C.
Peucheret
,
B.
Zsigri
, and
A.
Bjarklev
, “
Strained silicon as a new electro-optic material
,”
Nature
441
(
7090
),
199
202
(
2006
).
2.
S.
Bhowmick
and
V. B.
Shenoy
, “
Effect of strain on the thermal conductivity of solids
,”
J. Chem. Phys.
125
(
16
),
164513
(
2006
).
3.
Z.
Kerrami
,
A.
Sibari
,
O.
Mounkachi
,
A.
Benyoussef
, and
M.
Benaissa
, “
SnO2 improved thermoelectric properties under compressive strain
,”
Comput. Condens. Matter
18
,
e00356
(
2019
).
4.
Z.
Kerrami
,
A.
Sibari
,
O.
Mounkachi
,
A.
Benyoussef
, and
M.
Benaissa
, “
Improved photo-electrochemical properties of strained SnO2
,”
Int. J. Hydrogen Energy
45
,
11035
11039
(
2018
).
5.
A. I.
Hochbaum
and
P.
Yang
, “
Semiconductor nanowires for energy conversion
,”
Chem. Rev.
110
(
1
),
527
546
(
2009
).
6.
X.
Peng
and
P.
Logan
, “
Electronic properties of strained Si/Ge core-shell nanowires
,”
Appl. Phys. Lett.
96
(
14
),
143119
(
2010
).
7.
A.
Marjaoui
,
R.
Stephan
,
M. C.
Hanf
,
M.
Diani
, and
P.
Sonnet
, “
Using strain to control molecule chemisorption on silicene
,”
J. Chem. Phys.
147
(
4
),
044705
(
2017
).
8.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
, “
Measurement of the elastic properties and intrinsic strength of monolayer graphene
,”
Science
321
(
5887
),
385
388
(
2008
).
9.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
, “
Stretching and breaking of ultrathin MoS2
,”
ACS Nano
5
(
12
),
9703
9709
(
2011
).
10.
X.
Peng
,
Q.
Wei
, and
A.
Copple
, “
Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene
,”
Phys. Rev. B
90
(
8
),
085402
(
2014
).
11.
Q.
Wei
and
X.
Peng
, “
Superior mechanical flexibility of phosphorene and few-layer black phosphorus
,”
Appl. Phys. Lett.
104
(
25
),
251915
(
2014
).
12.
M.
Shamekhi
and
N.
Ghobadi
, “
Band structure and Schottky barrier modulation in multilayer black phosphorene and black phosphorene/graphene heterostructure through out-of-plane strain
,”
Physica B
580
,
411923
(
2020
).
13.
W.
Ju
,
T.
Li
,
H.
Wang
,
Y.
Yong
, and
J.
Sun
, “
Strain-induced semiconductor to metal transition in few-layer black phosphorus from first principles
,”
Chem. Phys. Lett.
622
,
109
114
(
2015
).
14.
H.
Guo
,
N.
Lu
,
J.
Dai
,
X.
Wu
, and
X. C.
Zeng
, “
Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers
,”
J. Phys. Chem. C
118
(
25
),
14051
14059
(
2014
).
15.
V.
Tran
,
R.
Soklaski
,
Y.
Liang
, and
L.
Yang
, “
Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus
,”
Phys. Rev. B
89
(
23
),
235319
(
2014
).
16.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
, “
Black phosphorus field-effect transistors
,”
Nat. Nanotechnol.
9
(
5
),
372
377
(
2014
).
17.
F.
Xia
,
H.
Wang
, and
Y.
Jia
, “
Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics
,”
Nat. Commun.
5
,
4458
(
2014
).
18.
J.
Yang
,
R.
Xu
,
J.
Pei
,
Y. W.
Myint
,
F.
Wang
,
Z.
Wang
,
S.
Zhang
,
Z.
Yu
, and
Y.
Lu
, arXiv:1412.6701.
19.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys. Condens. Matter
21
(
39
),
395502
(
2009
).
20.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
21.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
(
15
),
1787
1799
(
2006
).
22.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
(
18
),
8207
8215
(
2003
).
23.
A.
Brown
and
S.
Rundqvist
, “
Refinement of the crystal structure of black phosphorus
,”
Acta Crystallogr.
19
(
4
),
684
685
(
1965
).
24.
A.
Carvalho
,
M.
Wang
,
X.
Zhu
,
A. S.
Rodin
,
H.
Su
, and
A. H.
Neto
, “
Phosphorene: From theory to applications
,”
Nat. Rev. Mater.
1
(
11
),
16061
(
2016
).
25.
D.
Çakır
,
C.
Sevik
, and
F. M.
Peeters
, “
Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus
,”
Phys. Rev. B
92
(
16
),
165406
(
2015
).
26.
C.
Wang
,
Q.
Xia
,
Y.
Nie
, and
G.
Guo
, “
Strain-induced gap transition and anisotropic Dirac-like cones in monolayer and bilayer phosphorene
,”
J. Appl. Phys.
117
(
12
),
124302
(
2015
).
27.
J. P.
Perdew
, “
Density functional theory and the band gap problem
,”
Int. J. Quantum Chem.
28
(
S19
),
497
523
(
1985
).
28.
L.
Kou
,
Y.
Ma
,
S. C.
Smith
, and
C.
Chen
, “
Anisotropic ripple deformation in phosphorene
,”
J. Phys. Chem. Lett.
6
(
9
),
1509
1513
(
2015
).
29.
R.
Fei
and
L.
Yang
, “
Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus
,”
Nano Lett.
14
(
5
),
2884
2889
(
2014
).
30.
D.
Verma
,
B.
Hourahine
,
T.
Frauenheim
,
R. D.
James
, and
T.
Dumitrică
, “
Directional-dependent thickness and bending rigidity of phosphorene
,”
Phys. Rev. B
94
(
12
),
121404
(
2016
).
31.
Z. D.
Sha
,
Q. X.
Pei
,
Z.
Ding
,
J. W.
Jiang
, and
Y. W.
Zhang
, “
Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures
,”
J. Phys. D Appl. Phys.
48
(
39
),
395303
(
2015
).
32.
Y.
Li
,
S.
Yang
, and
J.
Li
, “
Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field
,”
J. Phys. Chem. C
118
(
41
),
23970
23976
(
2014
).
33.
S. A.
Rodin
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
Strain-induced gap modification in black phosphorus
,”
Phys. Rev. Lett.
112
,
176801
(
2014
).
34.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2005
), Chap. 7.
35.
M.
Baba
,
F.
Izumida
,
A.
Morita
,
Y.
Koike
, and
T.
Fukase
, “
Electrical properties of black phosphorus single crystals prepared by the bismuth-flux method
,”
Jpn. J. Appl. Phys.
30
(
8R
),
1753
(
1991
).
36.
R. W.
Keyes
, “
The electrical properties of black phosphorus
,”
Phys. Rev.
92
(
3
),
580
(
1953
).
37.
J. V.
Riffle
,
C.
Flynn
,
B.
St. Laurent
,
C. A.
Ayotte
,
C. A.
Caputo
, and
S. M.
Hollen
, “
Impact of vacancies on electronic properties of black phosphorus probed by STM
,”
J. Appl. Phys.
123
(
4
),
044301
(
2018
).
38.
A.
Jain
 et al, “The materials project: A materials genome approach to accelerating materials innovation,”
APL Mater.
1
(
1
),
011002
(
2013
).
You do not currently have access to this content.