For the perovskite halides, current voltage hysteresis is the biggest puzzle to be solved before industrialization in spite of promising features for future photo-voltaic applications. All the possible causes, from the classical (viz., morphology, defects, slow transient capacitance, etc.) to quantum (viz., spin–orbit interaction) ones, are investigated. However, its origin is still under debate, as possibilities showed some ambiguity on the science known until now. In the present work, we have studied the time dependent photo-conduction behavior of CsPbBr3 in continuous illumination of AM 1.5 G Sun light for 3 h. We observed a negative differential resistance for a forward scanned current–voltage curve in AM 1.5 G Sun light. Our investigations suggest that the photo-current voltage hysteresis is primarily affected by the thermionic-field emission, which slows down the drift velocity of hot charge carriers with field applications. This study will further lead the scientific community to investigate whether this slowdown in drift velocity is related to the Gunn effect or the Rashba effect.

1.
C.-X.
Qian
,
Z.-Y.
Deng
,
K.
Yang
,
J.
Feng
,
M.-Z.
Wang
,
Z.
Yang
,
S.
(Frank) Liu
, and
H.-J.
Feng
,
Appl. Phys. Lett.
112
,
093901
(
2018
).
2.
Q.
Tai
,
K.-C.
Tang
, and
F.
Yan
,
Energy Environ. Sci.
12
,
2375
(
2019
).
3.
M. I.
Ahmed
,
A.
Habib
, and
S. S.
Javaid
,
Int. J. Photoenergy
13
,
592308
(
2015
).
4.
J.
Wang
,
J.
Zhang
,
Y.
Zhou
,
H.
Liu
,
Q.
Xue
,
X.
Li
,
C.-C.
Chueh
,
H.-L.
Yip
,
Z.
Zhu
, and
A. K. Y.
Jen
,
Nat. Commun.
11
,
177
(
2020
).
5.
B.
Akbali
,
G.
Topcu
,
T.
Guner
,
M.
Ozcan
,
M. M.
Demir
, and
H.
Sahin
,
Phys. Rev. Mater.
2
,
034601
(
2018
).
6.
J. S.
Bechtel
,
J. C.
Thomas
, and
A.
Van der Ven
,
Phys. Rev. Mater.
3
,
113605
(
2019
).
7.
See https://www.nrel.gov/pv/insights/assets/pdfs/cell-pv-eff-emergingpv.20200406.pdf for the upgradation in efficiencies of PV cell with time.
8.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
,
J. Am. Chem. Soc.
131
(
17
),
6050
–6051 (
2009
).
9.
R.
Wang
,
M.
Mujahid
,
Y.
Duan
,
Z.-K.
Wang
,
J.
Xue
, and
Y.
Yang
,
Adv. Funct. Mater.
29
,
1808843
(
2019
).
10.
S.
Ghosh
,
R.
Singh
,
A. S.
Subbiah
,
P. P.
Boix
,
I. M.
Sero
, and
S. K.
Sarkar
,
Appl. Phys. Lett.
116
,
113502
(
2020
).
11.
D.
Song
,
J.
Ji
,
Y.
Li
,
G.
Li
,
M.
Li
,
T.
Wang
,
D.
Wei
,
P.
Cui
,
Y.
He
, and
J. M.
Mbengue
,
Appl. Phys. Lett.
108
,
093901
(
2016
).
12.
V.
Pawar
,
M.
Kumar
,
P. A.
Jha
,
S. K.
Gupta
,
P. K.
Jha
, and
P.
Singh
,
J. Alloys Compd.
783
,
935
942
(
2019
).
13.
M.
Kumar
,
V.
Pawar
,
P. A.
Jha
,
S. K.
Gupta
,
A. S. K.
Sinha
,
P. K.
Jha
, and
P.
Singh
,
J. Mater. Sci.: Mater. Electron.
30
,
6071
6081
(
2019
).
14.
S.
Thampy
,
B.
Zhang
,
K.-H.
Hong
,
K.
Cho
, and
J. W. P.
Hsu
,
ACS Energy Lett.
5
,
1147
1152
(
2020
).
15.
R.
An
,
F.
Zhang
,
X.
Zou
,
Y.
Tang
,
M.
Liang
,
I.
Oshchapovskyy
,
Y.
Liu
,
A.
Honarfar
,
Y.
Zhong
,
C.
Li
,
H.
Geng
,
J.
Chen
,
S.
Canton
,
T.
Pullerits
, and
K.
Zheng
,
ACS Appl. Mater. Interfaces
10
(
45
),
39222
–39227 (
2018
).
16.
W.
Nie
,
J.-C.
Blancon
,
A. J.
Neukirch
,
K.
Appavoo
,
H.
Tsai
,
M.
Chhowalla
,
M. A.
Alam
,
M. Y.
Sfeir
,
C.
Katan
,
J.
Even
,
S.
Tretiak
,
J. J.
Crochet
,
G.
Gupta
, and
A. D.
Mohite
,
Nat. Commun.
7
,
11574
(
2016
).
17.
P.
Cheng
and
X.
Zhan
,
Chem. Soc. Rev.
45
,
2544
2582
(
2016
).
18.
E. L.
Unger
,
E. T.
Hoke
,
C. D.
Bailie
,
W. H.
Nguyen
,
A. R.
Bowring
,
T.
Heumüller
,
M. G.
Christoforo
, and
M. D.
McGehee
,
Energy Environ. Sci.
7
,
3690
3698
(
2014
).
19.
H. J.
Snaith
,
A.
Abate
,
J. M.
Ball
,
G. E.
Eperon
,
T.
Leijtens
,
N. K.
Noel
,
S. D.
Stranks
,
J. T.-W.
Wang
,
K.
Wojciechowski
, and
W.
Zhang
,
J. Phys. Chem. Lett.
5
,
1511
1515
(
2014
).
20.
J.
Wei
,
Y.
Zhao
,
H.
Li
,
G.
Li
,
J.
Pan
,
D.
Xu
,
Q.
Zhao
, and
D.
Yu
,
J. Phys. Chem. Lett.
5
,
3937
3945
(
2014
).
21.
N. K.
Elumalai
and
A.
Uddin
,
Solar Energy Mater. Solar Cells
157
,
476
509
(
2016
).
22.
E. L.
Unger
,
E. T.
Hoke
,
C. D.
Bailie
,
W. H.
Nguyen
,
A. R.
Bowring
,
T.
Heumüller
,
M. G.
Christoforo
, and
M. D.
McGehee
,
Energy Environ. Sci.
7
,
3690
(
2014
).
23.
W.
Tress
,
J. P. C.
Baena
,
M.
Saliba
,
A.
Abate
, and
M.
Graetzel
,
Adv. Energy Mater.
6
,
1600396
(
2016
).
24.
B.
Chen
,
M.
Yang
,
S.
Priya
, and
K.
Zhu
,
J. Phys. Chem. Lett.
7
(
5
),
905
917
(
2016
).
25.
Y.
Rong
,
Y.
Hu
,
S.
Ravishankar
,
H.
Liu
,
X.
Hou
,
Y.
Sheng
,
A.
Mei
,
Q.
Wang
,
D.
Li
,
M.
Xu
,
J.
Bisquert
, and
H.
Han
,
Energy Environ. Sci.
10
,
2383
2391
(
2017
).
26.
D.-H.
Kang
and
N.-G.
Park
,
Adv. Mater.
31
,
1805214
(
2019
).
27.
O.
Almora
,
I.
Zarazua
,
E.
Mas-Marza
,
I.
Mora-Sero
,
J.
Bisquert
, and
G.
Garcia-Belmonte
,
J. Phys. Chem. Lett.
6
(
9
),
1645
1652
(
2015
).
28.
J.-W.
Lee
,
S.-G.
Kim
,
S.-H.
Bae
,
D.-K.
Lee
,
O.
Lin
,
Y.
Yang
, and
N.-G.
Park
,
Nano Lett.
17
(
7
),
4270
4276
(
2017
).
29.
S.
Reichert
,
J.
Flemming
,
Q.
An
,
Y.
Vaynzof
,
J.-F.
Pietschmann
, and
C.
Deibel
,
Phys. Rev. Appl.
13
,
034018
(
2020
).
30.
M.
Pazoki
and
T.
Edvinsson
,
Phys. Rev. B
100
,
045203
(
2019
).
31.
X.
Li
,
S.
Chen
,
P.-F.
Liu
,
Y.
Zhang
,
Y.
Chen
,
H.-L.
Wang
,
H.
Yuan
, and
S.
Feng
,
J. Am. Chem. Soc.
142
(
7
),
3316
3320
(
2020
).
32.
I.-H.
Park
,
Q.
Zhang
,
K. C.
Kwon
,
Z.
Zhu
,
W.
Yu
,
K.
Leng
,
D.
Giovanni
,
H. S.
Choi
,
I.
Abdelwahab
,
Q.-H.
Xu
,
T. C.
Sum
, and
K. P.
Loh
,
J. Am. Chem. Soc.
141
,
15972
15976
(
2019
).
33.
T. S.
Sherkar
and
L.
Jan Anton Koster
,
Phys. Chem. Chem. Phys.
18
,
331
(
2016
).
34.
C. H.
Ng
,
T. S.
Ripolles
,
K.
Hamada
,
S. H.
Teo
,
H. N.
Lim
, and
J. B. S.
Hayase
,
Sci. Rep.
8
,
3082
(
2018
).
35.
F.
Wang
,
S.
Bai
,
W.
Tress
,
A.
Hagfeldt
, and
F.
Gao
,
npj Flexible Electron.
2
,
22
(
2018
).
36.
T. S.
Sherkar
,
C.
Momblona
,
L.
G.-Escrig
,
J.
Avila
,
M.
Sessolo
,
H. J.
Bolink
, and
L.
Jan Anton Koster
,
ACS Energy Lett.
2
,
1214
1222
(
2017
).
37.
J.-W.
Lee
,
S.-G.
Kim
,
J.-M.
Yang
,
Y.
Yang
, and
N.-G.
Park
,
APL Mater.
7
,
041111
(
2019
).
38.
B.-B.
Zhang
,
F.
Wang
,
H.
Zhang
,
B.
Xiao
,
Q.
Sun
,
J.
Guo
,
A. B.
Hafsia
,
A.
Shao
,
Y.
Xu
, and
J.
Zhou
,
Appl. Phys. Lett.
116
,
063505
(
2020
).
39.
B.
Kang
and
K.
Biswas
,
J. Phys. Chem. Lett.
9
(
4
),
830
836
(
2018
).
40.
J.
Mizusaki
,
K.
Arai
, and
K.
Fueki
,
Solid State Ionics
11
,
203
211
(
1983
).
41.
D. P.
Almond
and
A. R.
West
,
Nature
306
,
456
(
1983
).
42.
A.
Ghosh
and
A.
Pan
,
Phys. Rev. B
84
(
10
),
2188
(
2000
).
43.
N. F.
Mott
,
J. Non-Cryst. Solids
1
,
1
17
(
1968
).
44.
F. D.
Morrison
,
D. J.
Jung
, and
J. F.
Scott
,
J. Appl. Phys.
101
,
094112
(
2007
).
45.
B. K.
Ridley
and
T. B.
Watkins
,
Proc. Phys. Soc.
78
,
293
(
1961
).
46.
B. K.
Ridley
,
Proc. Phys. Soc.
82
,
954
(
1963
).
47.
J. B.
Gunn
, in Proceedings of the Symposium on Plasma Effects in Solids, Paris (Dunod Cie, Paris, 1964), p. 19.
48.
E. M.
Conwell
,
Phys. Today
23
(
6
),
35
(
1970
).
49.
K. C.
Kao
,
Dielectric Phenomena in Solids
(
Elsevier
,
2004
).

Supplementary Material

You do not currently have access to this content.