We explore the possibility for reconstruction of the generative physical models describing interactions between atomic units in solids from observational electron microscopy data. Here, scanning transmission electron microscopy (STEM) is used to observe the dynamic motion of Si atoms at the edge of monolayer graphene under continuous electron beam illumination. The resulting time-lapsed STEM images represent the snapshots of observed chemical states of the system. We use two approaches: potential of mean force calculation using a radial distribution function and a direct fitting of the graphene–Si interatomic pairwise potentials with force matching, to reconstruct the force fields in the materials. These studies lay the foundation for quantitative analysis of materials energetics from STEM data through the sampling of the metastable states in the chemical space of the system.

1.
S. J.
Pennycook
 et al.,
Advances in Imaging and Electron Physics
(
Elsevier Academic Press Inc.
,
2008
), Vol. 153, p. 327.
2.
S. J.
Pennycook
and
P. D.
Nellist
,
Scanning Transmission Electron Microscopy: Imaging and Analysis
(
Springer
,
New York
,
2011
).
3.
P. E.
Batson
,
N.
Dellby
, and
O. L.
Krivanek
, “
Sub-angstrom resolution using aberration corrected electron optics
,”
Nature
418
,
617
620
(
2002
).
4.
N.
Dellby
,
O. L.
Krivanek
,
P. D.
Nellist
,
P. E.
Batson
, and
A. R.
Lupini
, “
Progress in aberration-corrected scanning transmission electron microscopy
,”
J. Electron Microsc.
50
,
177
185
(
2001
).
5.
A. B.
Yankovich
 et al., “
Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts
,”
Nat. Commun.
5
,
4155
(
2014
).
6.
Y.
Han
 et al., “
Strain mapping of Two-dimensional heterostructures with subpicometer precision
,”
Nano Lett.
18
,
3746
3751
(
2018
).
7.
W.
Gao
 et al., “
Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy
,”
Nature
575
,
480
484
(
2019
).
8.
Y.
Jiang
 et al., “
Electron ptychography of 2D materials to deep sub-angstrom resolution
,”
Nature
559
,
343
(
2018
).
9.
N.
Shibata
 et al., “
Differential phase-contrast microscopy at atomic resolution
,”
Nat. Phys.
8
,
611
615
(
2012
).
10.
M.
Varela
 et al., “
Spectroscopic imaging of single atoms within a bulk solid
,”
Phys. Rev. Lett.
92
,
095502
(
2004
).
11.
C. L.
Jia
 et al., “
Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films
,”
Nat. Mater.
6
,
64
69
(
2007
).
12.
C. L.
Jia
,
K. W.
Urban
,
M.
Alexe
,
D.
Hesse
, and
I.
Vrejoiu
, “
Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O(3)
,”
Science
331
,
1420
1423
(
2011
).
13.
C. L.
Jia
 et al., “
Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer
,”
Phys. Rev. Lett.
102
,
117601
(
2009
).
14.
M. F.
Chisholm
,
W. D.
Luo
,
M. P.
Oxley
,
S. T.
Pantelides
, and
H. N.
Lee
, “
Atomic-scale compensation phenomena at polar interfaces
,”
Phys. Rev. Lett.
105
,
197602
(
2010
).
15.
X. Q.
Pan
,
W. D.
Kaplan
,
M.
Ruhle
, and
R. E.
Newnham
, “
Quantitative comparison of transmission electron microscopy techniques for the study of localized ordering on a nanoscale
,”
J. Am. Ceram. Soc.
81
,
597
605
(
1998
).
16.
C. L.
Jia
 et al., “
Oxygen octahedron reconstruction in the SrTiO(3)/LaAlO(3) heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy
,”
Phys. Rev. B
79
,
081405(R)
(
2009
).
17.
A. Y.
Borisevich
 et al., “
Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces
,”
Phys. Rev. Lett.
105
,
087204
(
2010
).
18.
Q.
He
 et al., “
Towards 3D mapping of BO6 octahedron rotations at perovskite heterointerfaces, unit cell by unit cell
,”
ACS Nano
9
,
8412
8419
(
2015
).
19.
S.
Das
 et al., “
Observation of room-temperature polar skyrmions
,”
Nature
568
,
368
(
2019
).
20.
C. T.
Nelson
 et al., “
Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces
,”
Nano Lett.
11
,
828
834
(
2011
).
21.
L. Z.
Li
 et al., “
Observation of strong polarization enhancement in ferroelectric tunnel junctions
,”
Nano Lett.
19
,
6812
6818
(
2019
).
22.
M.
Campanini
,
R.
Erni
,
C. H.
Yang
,
R.
Ramesh
, and
M. D.
Rossell
, “
Periodic giant polarization gradients in doped BiFeO3 thin films
,”
Nano Lett.
18
,
717
724
(
2018
).
23.
G.
Van Tendeloo
,
S.
Bals
,
S.
Van Aert
,
J.
Verbeeck
, and
D.
Van Dyck
, “
Advanced electron microscopy for advanced materials
,”
Adv. Mater.
24
,
5655
5675
(
2012
).
24.
R. J.
Zeches
 et al., “
A strain-driven morphotropic phase boundary in BiFeO(3)
,”
Science
326
,
977
980
(
2009
).
25.
A. Y.
Borisevich
 et al., “
Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects
,”
Phys. Rev. Lett.
109
,
065702
(
2012
).
26.
H. J.
Chang
 et al., “
Atomically resolved mapping of polarization and electric fields across ferroelectric/oxide interfaces by Z-contrast imaging
,”
Adv. Mater.
23
,
2474
(
2011
).
27.
Q.
Li
 et al., “
Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling
,”
Nat. Commun.
8
,
13936
(
2017
). .
28.
M.
Ziatdinov
 et al., “
Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study
,”
Sci. Adv.
5
,
eaaw8989
(
2019
).
29.
A. G.
Rajan
 et al., “
Addressing the isomer cataloguing problem for nanopores in two-dimensional materials
,”
Nat. Mater.
18
,
129
(
2019
).
30.
L.
Vlcek
 et al., “
Learning from imperfections: Predicting structure and thermodynamics from atomic imaging of fluctuations
,”
ACS Nano
13
,
718
727
(
2019
).
31.
L.
Vlcek
,
A.
Maksov
,
M. H.
Pan
,
R. K.
Vasudevan
, and
S. V.
Kahnin
, “
Knowledge extraction from atomically resolved images
,”
ACS Nano
11
,
10313
10320
(
2017
).
32.
L.
Vlcek
,
W. W.
Sun
, and
P. R. C.
Kent
, “
Combining configurational energies and forces for molecular force field optimization
,”
J. Chem. Phys.
147
,
161713
(
2017
).
33.
L.
Vlcek
,
R. K.
Vasudevan
,
S.
Jesse
, and
S. V.
Kalinin
, “
Consistent integration of experimental and ab initio data into effective physical models
,”
J. Chem. Theory Comput.
13
,
5179
5194
(
2017
).
34.
O.
Dyck
,
S.
Kim
,
S. V.
Kalinin
, and
S.
Jesse
, “
Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies
,”
J. Vac. Sci. Technol. B
36
,
011801
(
2017
).
35.
S. J.
Pennycook
and
D. E.
Jenson
, “
High-resolution Z-contrast imaging of crystals
,”
Ultramicroscopy
37
,
14
38
(
1991
).
36.
D. E.
Jesson
,
S. J.
Pennycook
, and
J. M.
Baribeau
, “‘
Column-bycolumn’ compositional mapping at semiconductor interfaces using Z-contrast STEM
,”
High Resolut. Electron Microsc. Defects Mater.
183
,
223
230
(
1990
).
37.
S. J.
Pennycook
, “
Z-contrast stem for materials science
,”
Ultramicroscopy
30
,
58
69
(
1989
).
38.
O.
Dyck
,
S.
Kim
,
S. V.
Kalinin
, and
S.
Jesse
, “
Placing single atoms in graphene with a scanning transmission electron microscope
,”
Appl. Phys. Lett.
111
,
113104
(
2017
).
39.
M.
Ziatdinov
,
C.
Nelson
,
R. K.
Vasudevan
,
D. Y.
Chen
, and
S. V.
Kalinin
, “
Building ferroelectric from the bottom up: The machine learning analysis of the atomic-scale ferroelectric distortions
,”
Appl. Phys. Lett.
115
,
052902
(
2019
).
40.
J.
Barthel
, “
Dr. Probe: A software for high-resolution STEM image simulation
,”
Ultramicroscopy
193
,
1
11
(
2018
).
41.
N.
Inui
and
S.
Iwasaki
, “
Interaction energy between graphene and a silicon substrate using pairwise summation of the Lennard-Jones potential
,”
e-J. Surf. Sci. Nanotechnol.
15
,
40
49
(
2017
).
42.
M.
Pykal
,
P.
Jurečka
,
F.
Karlický
, and
M.
Otyepka
, “
Modelling of graphene functionalization
,”
Phys. Chem. Chem. Phys.
18
,
6351
6372
(
2016
).
43.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
1074
(
2000
).
44.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Ceram. Soc.
118
,
11225
11236
(
1996
).
45.
N.
Foloppe
,
J.
MacKerell
, and
D.
Alexander
, “
All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data
,”
J. Comput. Chem.
21
,
86
104
(
2000
).
46.
H.
Ulbricht
,
G.
Moos
, and
T.
Hertel
, “
Interaction of C60 with carbon nanotubes and graphite
,”
Phys. Rev. Lett.
90
,
095501
(
2003
).
47.
L. A.
Girifalco
,
M.
Hodak
, and
R. S.
Lee
, “
Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential
,”
Phys. Rev. B
62
,
13104
13110
(
2000
).
48.
A.
Cheng
and
W. A.
Steele
, “
Computer simulation of ammonia on graphite. II. Monolayer melting
,”
J. Chem. Phys.
92
,
3867
3873
(
1990
).
49.
H.
Sun
, “
COMPASS:  An ab initio force-field optimized for condensed-phase: Applications overview with details on alkane and benzene compounds
,”
J. Phys. Chem. B
102
,
7338
7364
(
1998
).
50.
C. Q.
Sun
 et al., “
Coordination-resolved C−C bond length and the C 1 s binding energy of carbon allotropes and the effective atomic coordination of the few-layer graphene
,”
J. Phys. Chem. C
113
,
16464
16467
(
2009
).
51.
P.
Rowe
,
G.
Csányi
,
D.
Alfè
, and
A.
Michaelides
, “
Development of a machine learning potential for graphene
,”
Phys. Rev. B
97
,
054303
(
2018
).
52.
B. I.
Costescu
,
I. B.
Baldus
, and
F.
Gräter
, “
Graphene mechanics I. Efficient first principles based Morse potential
,”
Phys. Chem. Chem. Phys.
16
,
12591
12598
(
2014
).
53.
T.
Trevethan
,
C. D.
Latham
,
M. I.
Heggie
,
P. R.
Briddon
, and
M. J.
Rayson
, “
Vacancy diffusion and coalescence in graphene directed by defect strain fields
,”
Nanoscale
6
,
2978
2986
(
2014
).
54.
G.
Yang
,
L.
Li
,
W. B.
Lee
, and
M. C.
Ng
, “
Structure of graphene and its disorders: A review
,”
Sci. Technol. Adv. Mater.
19
,
613
648
(
2018
).
55.
D.
Chandler
, “
Introduction to modern statistical mechanics
,” in
Introduction to Modern Statistical Mechanics
, edited by
D.
Chandler,
Foreword by David Chandler, September 1987 (
Oxford University Press
,
1987
), pp.
288
, ISBN-10: 0195042778, ISBN-13: 9780195042771.
56.
S. A.
Adelman
, in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(John Wiley & Sons, Ltd.,
2007
), Chap. 2, pp.
143
253
.
57.
G. A.
Pavliotis
,
Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations
(
Springer
,
2014
), Vol. 60.
58.
B.
Rainier
,
C.
Maghesree
,
A.
Dilnoza
,
G.
Heta
, and
W.
Andrew
, “
A GPU accelerated machine learning framework for molecular simulation: HOOMD blue with tensor flow
,”
chemRxiv
8019527.
59.
S.
Izvekov
and
G. A.
Voth
, “
A multiscale coarse-graining method for biomolecular systems
,”
J. Phys. Chem. B
109
,
2469
2473
(
2005
).
60.
A.
Sanchez-Gonzalez
,
V.
Bapst
,
K.
Cranmer
, and
P.
Battaglia
, “
Hamiltonian graph networks with ODE integrators
,” arXiv:1909.12790 (
2019
).

Supplementary Material

You do not currently have access to this content.