Calculations of skyrmions in antiferromagnets (AFMs) are presented, and their properties compared with skyrmions in corresponding ferromagnets (FMs). The rates of skyrmion collapse and escape through the boundary of a track, as well as the binding to and collapse at a non-magnetic impurity, are calculated as a function of an applied magnetic field. The activation energy for skyrmion annihilation is the same in AFMs and corresponding FMs in the absence of an applied magnetic field. The pre-exponential factor in the Arrhenius rate law is, however, different because skyrmion dynamics is different in the two systems. An applied magnetic field has opposite effects on skyrmions in the two types of materials. In AFMs, the rate of collapse of skyrmions as well as the rate of escape through the edge of a magnetic strip decreases slightly with increasing field, while these rates increase strongly for a skyrmion in the corresponding FMs when the field is directed antiparallel to the magnetization in the center of the skyrmion. A non-magnetic impurity is less likely to trap a skyrmion in AFMs, especially in the presence of a magnetic field. This, together with the established fact that a spin polarized current moves skyrmions in AFMs in the direction of the current, while in FMs skyrmions move at an angle to the current, demonstrates that skyrmions in AFMs have several advantageous properties over skyrmions in FMs for memory and spintronic devices.

1.
A.
Fert
,
N.
Reyren
, and
V.
Cros
,
Nat. Rev. Mater.
2
,
17031
(
2017
).
2.
F.
Büttner
,
I.
Lemesh
, and
G. S. D.
Beach
,
Sci. Rep.
8
,
4464
(
2018
).
3.
K.
Everschor-Sitte
,
J.
Masell
,
R.
Reeve
, and
M.
Kläui
,
J. Appl. Phys.
124
,
240901
(
2018
).
4.
S.
Heinze
,
K.
von Bergmann
,
M.
Menzel
,
J.
Brede
,
A.
Kubetzka
,
R.
Wiesendanger
,
G.
Bihlmayer
, and
S.
Blügel
,
Nat. Phys.
7
,
713
(
2011
).
5.
S.
Woo
,
K.
Litzius
,
B.
Kruger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
,
M.
Weigand
,
P.
Agrawal
,
I.
Lemesh
,
M.-A.
Mawass
,
P.
Fischer
,
M.
Klaui
, and
G. S. D.
Beach
,
Nat. Mater.
15
,
501
(
2016
).
6.
Y.
Tokunaga
,
X. Z.
Yu
,
J. S.
White
,
H. M.
Rnnow
,
D.
Morikawa
,
Y.
Taguchi
, and
Y.
Tokura
,
Nat. Commun.
6
,
7638
(
2015
).
7.
V. M.
Uzdin
,
M. N.
Potkina
,
I. S.
Lobanov
,
P. F.
Bessarab
, and
H.
Jónsson
,
J. Magn. Magn. Mater.
459
,
236
(
2018
).
8.
P. F.
Bessarab
,
G. P.
Müller
,
I. S.
Lobanov
,
F. N.
Rybakov
,
N. S.
Kiselev
,
H.
Jónsson
,
V. M.
Uzdin
,
S.
Blügel
,
L.
Bergqvist
, and
A.
Delin
,
Sci. Rep.
8
,
3433
(
2018
).
9.
R.
Wiesendanger
,
Rev. Mater.
1
,
16044
(
2016
).
10.
A.
Soumyanarayanan
,
M.
Raju
,
A. G.
Oyarce
et al.,
Nat. Mater.
16
,
898
(
2017
).
11.
K.
Litzius
,
I.
Lemesh
,
B.
Krüger
,
P.
Bassirian
,
L.
Caretta
,
K.
Richter
,
F.
Büttner
,
K.
Sato
,
O. A.
Tretiakov
,
J.
Förster
,
R. M.
Reeve
,
M.
Weigand
,
I.
Bykova
,
H.
Stoll
,
G.
Schütz
,
G. S. D.
Beach
, and
M.
Kläui
,
Nat. Phys.
13
,
170
(
2017
).
12.
L.
Šmejkal
,
Y.
Mokrousov
,
B.
Yan
, and
A. H.
MacDonald
,
Nat. Commun.
14
,
242
(
2018
).
13.
O.
Gomonay
,
T.
Jungwirth
, and
J.
Sinova
,
Phys. Rev. Lett.
117
,
017202
(
2016
).
14.
A. K.
Nayak
,
V.
Kumar
,
T.
Ma
,
P.
Werner
,
E.
Pippel
,
R.
Sahoo
,
F.
Damay
,
U. K.
Rößler
,
C.
Felser
, and
S. S. P.
Parkin
,
Nature
548
,
561
(
2017
).
15.
W.
Legrand
,
D.
Maccariello
,
F.
Ajejas
,
S.
Collin
,
A.
Vecchiola
,
K.
Bouzehouane
,
N.
Reyren
,
V.
Cros
, and
A.
Fert
,
Nat. Mater.
19
,
34
(
2020
).
16.
L.
Caretta
,
M.
Mann
,
F.
Büttner
,
K.
Ueda
,
B.
Pfau
,
C. M.
Günther
,
P.
Hessing
,
A.
Churikova
,
C.
Klose
,
M.
Schneider
,
E. D.
C. Marcus
,
B. D.
B. K.
,
S.
Eisebitt
, and
G. S. D.
Beach
,
Nat. Nanotechnol.
13
,
1154
(
2018
).
17.
S.
Woo
,
K. M.
Song
,
X.
Zhang
,
Y.
Zhou
,
M.
Ezawa
,
X.
Liu
,
S.
Finizio
,
J.
Raabe
,
N. J.
Lee
,
S.-I.
Kim
,
S.-Y.
Park
,
Y.
Kim
,
J.-Y.
Kim
,
D.
Lee
,
O.
Lee
,
J. W.
Choi
,
B.-C.
Min
,
H. C.
Koo
, and
J.
Chang
,
Nat. Commun.
9
,
959
(
2018
).
18.
P. M.
Buhl
,
F.
Freimuth
,
S.
Blügel
, and
Y.
Mokrousov
,
Phys. Status Solidi RRL
11
,
1700007
(
2017
).
19.
A. N.
Bogdanov
and
D. A.
Yablonskii
,
Sov. Phys. JETP
68
,
101
(
1989
); Sov. Phys. JETP 69, 142 (1989).
20.
A. N.
Bogdanov
and
A. A.
Shestakov
,
Low Temp. Phys.
25
,
76
(
1999
).
21.
A. N.
Bogdanov
,
U. K.
Rösler
,
M.
Wolf
, and
K.-H.
Müller
,
Phys. Rev. B
66
,
214410
(
2002
).
22.
L.
Shen
,
J.
Xia
,
G.
Zhao
,
X.
Zhang
,
M.
Ezawa
,
O. A.
Tretiakov
,
X.
Liu
, and
Y.
Zhou
,
Phys. Rev. B
98
,
134448
(
2018
).
23.
X.
Liang
,
G.
Zhao
,
L.
Shen
,
J.
Xia
,
L.
Zhao
,
X.
Zhang
, and
Y.
Zhou
,
Phys. Rev. B
100
,
144439
(
2019
).
24.
R.
Khoshlahni
,
A.
Qaiumzadeh
,
A.
Bergman
, and
A.
Brataas
,
Phys. Rev. B
99
,
054423
(
2019
).
25.
R.
Keesman
,
M.
Raaijmakers
,
A. E.
Baerends
,
G. T.
Barkema
, and
R. A.
Duine
,
Phys. Rev. B
94
,
054402
(
2016
).
26.
X.
Zhang
,
Y.
Zhou
, and
M.
Ezawa
,
Sci. Rep.
6
,
24795
(
2016
).
27.
C.
Jin
,
C.
Song
,
J.
Wang
, and
Q.
Liu
,
Appl. Phys. Lett.
109
,
182404
(
2016
).
28.
J.
Barker
and
O. A.
Tretiakov
,
Phys. Rev. Lett.
116
,
147203
(
2016
).
29.
P.
Bessarab
,
D.
Yudin
,
D.
Gulevich
,
P.
Wadley
,
M.
Titov
, and
O. A.
Tretiakov
,
Phys. Rev. B
99
,
140411
(
2019
).
30.
I. S.
Lobanov
,
H.
Jónsson
, and
V. M.
Uzdin
,
Phys. Rev.
B 94
,
174418
(
2016
).
31.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Comput. Phys. Commun.
196
,
335
(
2015
).
32.
I. S.
Lobanov
,
M. N.
Potkina
,
H.
Jónsson
, and
V. M.
Uzdin
,
Nanosyst. Phys. Chem. Math.
8
,
586
(
2017
).
33.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Z. Phys. Chem.
227
,
1543
(
2013
).
34.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Phys. Rev. B
85
,
184409
(
2012
).
35.
A.
Ivanov
,
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
,
Nanoscale
9
,
13320
(
2017
).
36.
W. T.
Coffey
,
D. A.
Garanin
, and
D. J.
McCarthy
,
Adv. Chem. Phys.
117
,
483
(
2001
).
37.
L.
Desplat
,
D.
Suess
,
J.-V.
Kim
, and
R.
Stamp
,
Phys. Rev. B
98
,
134407
(
2018
).
38.
D.
Stosic
,
J.
Mulkers
,
B.
Van Waeyenberge
,
T. B.
Ludermir
, and
M. V.
Milosević
,
Phys. Rev. B
95
,
214418
(
2017
).
39.
V. M.
Uzdin
,
M. N.
Potkina
,
I. S.
Lobanov
,
P. F.
Bessarab
, and
H.
Jónsson
,
Physica B
549
,
6
(
2018
).
40.
L.
Rózsa
,
S.
Selzer
,
T.
Birk
,
U.
Atxitia
, and
U.
Nowak
,
Phys. Rev. B
100
,
064422
(
2019
).
41.
R. L.
Silva
,
R. C.
Silva
,
A.
Pereira
, and
W. A.
Moura-Melo
,
J. Phys. Condens. Matter
31
,
225802
(
2019
).
42.
H. R. O.
Sohn
,
S. M.
Vlasov
,
V. M.
Uzdin
,
A. O.
Leonov
, and
I. I.
Smalyukh
,
Phys. Rev. B
100
,
104401
(
2019
).
43.
S. M.
Vlasov
,
V. M.
Uzdin
, and
A. O.
Leonov
,
J. Phys. Condens. Matter
32
,
185801
(
2020
).
44.
S.
von Malottki
,
B.
Dupé
,
P. F.
Bessarab
,
A.
Delin
, and
S.
Heinze
,
Sci. Rep.
7
,
12299
(
2017
).
45.
C. T.
Ma
,
Y.
Xie
,
H.
Sheng
,
A.
Ghosh
, and
S. J.
Poon
,
Sci. Rep.
9
,
9964
(
2019
).
46.
M. N.
Potkina
,
I. S.
Lobanov
,
O. A.
Tretiakov
,
H.
Jónsson
, and
V. M.
Uzdin
, arxiv.org/abs/1906.06383 (2019).
You do not currently have access to this content.