Motivated by the recently observed topological Hall effect in ultra-thin films of SrRuO3 (SRO) grown on the SrTiO3 [001] substrate, we investigate the magnetic ground state and anomalous Hall response of the SRO ultra-thin films by virtue of spin density functional theory (DFT). Our findings reveal that in the monolayer limit of an SRO film, a large energy splitting of Ru-t2g states stabilizes an anti-ferromagnetic (AFM) insulating magnetic ground state. For the AFM ground state, our Berry curvature calculations predict a large anomalous Hall response upon doping. From the systematic symmetry analysis, we uncover that the large anomalous Hall effect arises due to a combination of broken time-reversal and crystal symmetries caused by the arrangement of non-magnetic atoms (Sr and O) in the SRO monolayer. We identify the emergent Hall effect as a clear manifestation of the so-called crystal Hall effect in terminology of Šmejkal et al., Crystal Hall effect in collinear antiferromagnets (2019), and demonstrate that it persists at finite frequencies, which is the manifestation of the crystal magneto-optical effect. Moreover, we find a colossal dependence of the anomalous Hall effect on the degree of crystal symmetry breaking also in ferromagnetic SRO films, which all together points to an alternative explanation of the emergence of the topological Hall effect observed in this type of systems.

1.
H. N.
Lee
,
H. M.
Christen
,
M. F.
Chisholm
,
C. M.
Rouleau
, and
D. H.
Lowndes
, “
Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure
,”
Appl. Phys. Lett.
84
,
4107
(
2004
).
2.
J.
Junquera
and
P.
Ghosez
, “
Critical thickness for ferroelectricity in perovskite ultrathin films
,”
Nature
422
,
506
(
2003
).
3.
M.
Stengel
and
N. A.
Spaldin
, “
Origin of the dielectric dead layer in nanoscale capacitors
,”
Nature
443
,
679
(
2006
).
4.
Z.
Fang
et al., “
The anomalous Hall effect and magnetic monopoles in momentum space
,”
Science
302
,
5642
(
2003
).
5.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
,
323
(
2005
).
6.
D.
Awschalom
and
M.
Flatte
, “
Challenges for semiconductor spintronics
,”
Nat. Phys.
3
,
153
(
2007
).
7.
J.
Matsuno
et al., “
Interface driven topological Hall effect in SrRuO3-SrIrO3 bilayer
,”
Sci. Adv.
2
,
e1600304
(
2016
).
8.
Y.
Gu
et al., “
Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films
,”
J. Phys. D: Appl. Phys.
52
,
404001
(
2019
).
9.
B.
Sohn
et al., “Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer,” arXiv 1810.01615 (2018).
10.
D. J.
Groenendijk
et al., “Berry phase engineering at oxide interfaces,” arXiv:1810.05619 (2018).
11.
G.
Malsch
et al., “Correlating the nanoscale structural, magnetic and magneto-transport properties in SrRuO3-based perovskite oxide ultra-thin films,” arXiv:1910.01474 (2019).
12.
E. H.
Hall
, “
On a new action of the magnet on electric currents
,”
Am. J. Math.
2
,
287
(
1879
).
13.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
, “
Anomalous Hall effect
,”
Rev. Mod. Phys.
82
,
1539
1592
(
2010
).
14.
K.
von Klitzing
, “
The quantized Hall effect
,”
Rev. Mod. Phys.
58
,
519
(
1986
).
15.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
(
2015
).
16.
A.
Neubauer
et al., “
Topological Hall effect in the A phase of MnSi
,”
Phys. Rev. Lett.
102
,
186602
(
2009
).
17.
Y.
MacHida
,
S.
Nakatsuji
,
S.
Onoda
,
T.
Tayama
, and
T.
Sakakibara
, “
Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order
,”
Nature
463
,
210
213
(
2010
).
18.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
19.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronic
,”
Nat. Nanotechnol.
11
,
231
(
2016
).
20.
L.
Šmejkal
,
Y.
Mokrousov
,
B.
Yan
, and
A. H.
MacDonald
, “
Topological antiferromagnetic spintronics
,”
Nat. Phys.
14
,
242
(
2018
).
21.
T.
Tomizawa
and
H.
Kontani
, “
Anomalous Hall effect due to noncollinearity in pyrochlore compounds: Role of orbital Aharonov-Bohm effect
,”
Phys. Rev. B
82
,
104412
(
2010
).
22.
T.
Tomizawa
and
H.
Kontani
, “
Anomalous Hall effect in the t2g orbital kagome lattice due to noncollinearity: Significance of the orbital Aharonov-Bohm effect
,”
Phys. Rev. B
80
,
100401(R)
(
2009
).
23.
H.
Chen
,
Q.
Niu
, and
A. H.
MacDonald
, “
Anomalous Hall effect arising from noncollinear antiferromagnetism
,”
Phys. Rev. Lett.
112
,
017205
(
2014
).
24.
J.
Kübler
and
C.
Felser
, “
Non-collinear antiferromagnets and the anomalous Hall effect
,”
Europhys. Lett.
108
,
67001
(
2014
).
25.
S.
Nakatsuji
,
N.
Kiyohara
, and
T.
Higo
, “
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
,”
Nature
527
,
212
(
2015
).
26.
A. K.
Nayak
,
J. E.
Fischer
,
Y.
Sun
,
B.
Yan
,
J.
Karel
,
A. C.
Komarek
,
C.
Shekhar
,
N.
Kumar
,
W.
Schnelle
,
J.
Kübler
,
C.
Felser
, and
S. P. P.
Parkin
, “
Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncollinear antiferromagnet Mn3Ge
,”
Sci. Adv.
2
,
e1501870
(
2016
).
27.
Y.
Zhang
,
Y.
Sun
,
H.
Yang
,
J.
Železný
,
S. P. P.
Parkin
,
C.
Felser
, and
B.
Yan
, “
Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh and Pt)
,”
Phys. Rev. B
95
,
075128
(
2017
).
28.
C.
Sürgers
,
G.
Fischer
,
P.
Winkel
, and
H. V.
Löhneysen
, “
Large topological Hall effect in the non-collinear phase of an antiferromagnet
,”
Nat. Commun.
5
,
3400
(
2014
).
29.
X.
Zhou
,
J.-P.
Hanke
,
W.
Feng
,
F.
Li
,
G.-Y.
Guo
,
Y.
Yao
,
S.
Blügel
, and
Y.
Mokrousov
, “
Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag or Ni
,”
Phys. Rev. B
99
,
104428
(
2019
).
30.
L.
Šmejkal
,
R.
González-Hernández
,
T.
Jungwirth
, and
J.
Sinova
, “Crystal Hall effect in collinear antiferromagnets,” arXiv:1901.00445 (2019).
31.
S. G.
Jeong
et al., “
Phase instability amid dimensional crossover in artificial oxide crystal
,”
Phy. Rev. Lett.
124
,
026401
(
2020
).
32.
D.
Toyota
et al., “
Thickness-dependent electronic structure of ultrathin SrRuO3 films studied by in situ photoemission spectroscopy
,”
Appl. Phys. Lett.
87
,
162508
(
2005
).
33.
Y. J.
Chang
et al., “
Fundamental thickness limit of itinerant ferromagnetic SrRuO3 thin films
,”
Phys. Rev. Lett.
103
,
057201
(
2009
).
34.
J.
Xia
,
W.
Siemons
,
G.
Koster
,
M. R.
Beasley
, and
A.
Kapitulnik
, “
Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3
,”
Phys. Rev. B
79
,
140407(R)
(
2009
).
35.
See www.flapw.de for information about FLEUR.
36.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
37.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
38.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
40.
V. I.
Anisimovdag
,
F.
Aryasetiawanddag
, and
A. I.
Lichtenstein
, “
First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method
,”
J. Phys. Condens. Matter
9
,
767
(
1997
).
41.
F.
Aryasetiawan
,
M.
Imada
,
A.
Georges
,
G.
Kotliar
,
S.
Biermann
, and
A. I.
Lichtenstein
, “
Frequency-dependent local interactions and low-energy effective models from electronic structure calculations
,”
Phys. Rev. B
70
,
195104
(
2004
).
42.
E.
Şaşıoğlu
,
C.
Friedrich
, and
S.
Blügel
, “
Strength of the effective coulomb interaction at metal and insulator surfaces
,”
Phys. Rev. Lett.
109
,
146401
(
2012
).
43.
C.
Friedrich
,
S.
Blügel
, and
A.
Schindlmayr
, “
Efficient implementation of the GW approximation within the all-electron FLAPW method
,”
Phys. Rev. B
81
,
125102
(
2010
).
44.
G.
Koster
et al., “
Structure, physical properties, and applications of SrRuO3 thin films
,”
Rev. Mod. Phys.
84
,
253
298
(
2012
).
45.
A.
Leonarska
,
K.
Szot
, and
A.
Ratuszna
, “
Temperature evolution of the crystal structure in SrTiO3 doped by W6+, Ni3+, Fe3+ and La3+
,”
Phase Transit.
84
,
1015
1027
(
2011
).
46.
P.
Mahadevan
,
F.
Aryasetiawan
,
A.
Janotti
, and
T.
Sasaki
, “
Evolution of the electronic structure of a ferromagnetic metal: Case of SrRuO3
,”
Phys. Rev. B
80
,
035106
(
2009
).
47.
S.
Ryee
and
M. J.
Han
, “
Magnetic ground state of SrRuO3 thin film and applicability of standard first-principles approximations to metallic magnetism
,”
Sci. Rep.
7
,
4635
(
2017
).
48.
A. T.
Zayak
,
X.
Huang
,
J. B.
Neaton
, and
K. M.
Rabe
, “
Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain
,”
Phys. Rev. B
74
,
094104
(
2006
).
49.
C. W.
Jones
,
P. W.
Battle
,
P.
Lightfoot
, and
W. T. A.
Harrison
, “
The structure of SrRuO3 by time-of-flight neutron powder diffraction
,”
Acta Crystallogr. Sec. C: Cryst. Struct. Commun.
45
,
365
367
(
1989
).
50.
L.
Si
,
Z.
Zhong
,
J. M.
Tomczak
, and
K.
Held
, “
Route to room-temperature ferromagnetic ultrathin SrRuO3 films
,”
Phys. Rev. B
92
,
041108(R)
(
2015
).
51.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
52.
A. A.
Mostofi
et al., “
An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
185
,
2309
2310
(
2014
).
53.
J.-P.
Hanke
,
F.
Freimuth
,
S.
Blügel
, and
Y.
Mokrousov
, “
Higher-dimensional Wannier functions of multiparameter Hamiltonians
,”
Phys. Rev. B
91
,
184413
(
2015
).
54.
F.
Freimuth
,
Y.
Mokrousov
,
D.
Wortmann
,
S.
Heinze
, and
S.
Blügel
, “
Maximally localized Wannier functions within the FLAPW formalism
,”
Phys. Rev. B
78
,
035120
(
2008
).
55.
A.
Liebsch
and
H.
Ishida
, “
Subband filling and mott transition in Ca2xSrxRuO4
,”
Phys. Rev. Lett.
98
,
216403
(
2007
).
56.
K. I.
Kugel
and
D. I.
Khomskii
, “
Sov. The Jahn-Teller effect and magnetism: Transition metal compounds
,”
Phys. Usp.
25
,
231
(
1982
).
57.
P.
Bruno
, “
Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers
,”
Phys. Rev. B
39
,
865(R)
(
1989
).
58.
X.
Wang
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation
,”
Phys. Rev. B
74
,
195118
(
2006
).
59.
Y.
Yao
et al., “
First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe
,”
Phys. Rev. Lett.
92
,
037204
(
2004
).
60.
E.
Roman
,
Y.
Mokrousov
, and
I.
Souza
, “
Orientation dependence of the intrinsic t in hcp cobalt
,”
Phys. Rev. Lett.
103
,
097203
(
2009
).
61.
We also checked the calculations of AHC considering the atomic like MLWFs of Ru-t2g only orbitals and the result is found to be the same as that presented in Fig. 3(b).
62.
M.
Ziese
,
I.
Vrejoiu
, and
D.
Hesse
, “
Structural symmetry and magnetocrystalline anisotropy of SrRuO3 films on SrTiO3
,”
Phys. Rev. B
81
,
1844
(
2010
).
63.
B.
Sohn
et al., “Sign-tunable anomalous Hall effect induced by symmetry-protected nodal structures in ferromagnetic perovskite oxide thin films,” arXiv:1912.04757 (2019).
64.
P.
Zhang
,
A.
Das
,
E.
Barts
,
M.
Azhar
,
L.
Si
,
K.
Held
,
M.
Mostovoy
, and
T.
Banerjee
, “Robust skyrmion-bubble textures in SrRuO3 thin films stabilized by magnetic anisotropy,” arXiv:2001.07039 (2020).
65.
W.
Zhang
,
M. B.
Jungfleisch
,
W.
Jiang
,
J. E.
Pearson
,
A.
Hoffmann
,
F.
Freimuth
, and
Y.
Mokrousov
, “
Spin Hall effects in metallic antiferromagnets
,”
Phys. Rev. Lett.
113
,
196602
(
2014
).
66.
F.
Freimuth
,
S.
Blügel
, and
Y.
Mokrousov
, “
Anisotropic spin Hall effect from first principles
,”
Phys. Rev. Lett.
105
,
246602
(
2010
).
You do not currently have access to this content.