To investigate the role of crystal anisotropy on the elastic–plastic deformation of BCC single crystals at high shock stresses, molybdenum (Mo) single crystals were shock compressed along the [100], [111], and [110] orientations at elastic impact stresses between 20 and 110 GPa. Laser interferometry was used to measure shock wave velocities and particle velocity histories. Along the [100] and [111] orientations, elastic–plastic waves (two wave structure) were observed up to 110 GPa. Along the [110] orientation, the two wave structure was observed only up to 90 GPa. The measured elastic wave amplitudes were analyzed to determine crystal anisotropy effects, impact stress dependence, and the activated slip systems on the Hugoniot elastic limit. The findings from our work have provided insight into the role of crystal anisotropy on the elastic–plastic deformation under shock compression at high stresses.

1.
A.
Mandal
and
Y. M.
Gupta
, “
Elastic–plastic deformation of molybdenum single crystals shocked along [100]
,”
J. Appl. Phys.
121
,
045903
(
2017
).
2.
A.
Mandal
and
Y. M.
Gupta
, “
Elastic–plastic deformation of molybdenum single crystals shocked to 12.5 GPa: Crystal anisotropy effects
,”
J. Appl. Phys.
125
,
055903
(
2019
).
3.
G.
Whiteman
,
S.
Case
, and
J. C. F.
Millett
, “
Planar shock compression of single crystal tantalum from 6–23 GPa
,”
J. Phys. Conf. Ser.
500
,
112067
(
2014
).
4.
Y. M.
Gupta
, “
Elastic compression to 30 kbar along 111 in shocked LiF
,”
Appl. Phys. Lett.
26
,
38
(
1975
).
5.
Y. M.
Gupta
, “
Effect of crystal orientation on dynamic strength of LiF
,”
J. Appl. Phys.
48
,
5067
(
1977
).
6.
J. R.
Asay
,
G. R.
Fowles
,
G. E.
Duvall
,
M. H.
Miles
, and
R. F.
Tinder
, “
Effects of point defects on elastic precursor decay in LiF
,”
J. Appl. Phys.
43
,
2132
(
1972
).
7.
W. J.
Murri
and
G. D.
Anderson
, “
Hugoniot elastic limit of single-crystal sodium chloride
,”
J. Appl. Phys.
41
,
3521
(
1970
).
8.
J. M.
Winey
,
P.
Renganathan
, and
Y. M.
Gupta
, “
Shock wave compression and release of hexagonal-close-packed metal single crystals: Inelastic deformation of c-axis magnesium
,”
J. Appl. Phys.
117
,
105903
(
2015
).
9.
P.
Renganathan
,
J. M.
Winey
, and
Y. M.
Gupta
, “
Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response
,”
J. Appl. Phys.
121
,
035901
(
2017
).
10.
L. E.
Pope
and
J. N.
Johnson
, “
Shock-wave compression of single-crystal beryllium
,”
J. Appl. Phys.
46
,
720
(
1975
).
11.
O. E.
Jones
and
J. D.
Mote
, “
Shock-induced dynamic yielding in copper single crystals
,”
J. Appl. Phys.
40
,
4920
(
1969
).
12.
N. K.
Chen
,
R.
Maddin
, and
R. B.
Pond
, “
Growth of molybdenum single crystals
,”
J. Metals
3
,
461
(
1951
).
13.
S. S.
Lau
and
J. E.
Dorn
, “
Interstitial impurity effects on the mechanical properties of molybdenum single crystals
,”
Scr. Metallurg.
2
,
335
(
1968
).
14.
N. K.
Chen
and
R.
Maddin
, “
Plasticity of molybdenum single crystals
,”
J. Metals
3
,
937
(
1951
).
15.
P. J.
Sherwood
,
F.
Guiu
,
H. C.
Kim
, and
P. L.
Pratt
, “
Plastic anisotropy of tantalum, niobium, and molybdenum
,”
Can. J. Phys.
45
,
1075
(
1967
).
16.
S. S.
Lau
,
S.
Ranji
,
A. K.
Mukherjee
,
G.
Thomas
, and
J. E.
Dorn
, “
Dislocation mechanisms in single crystals of tantalum and molybdenum at low temperatures
,”
Acta Metall.
15
,
237
(
1967
).
17.
S. S.
Lau
and
J. E.
Dorn
, “
Asymmetric slip in Mo single crystals
,”
Phys. Status Solidi (a)
2
,
825
(
1970
).
18.
G. J.
Irwin
,
F.
Guiu
, and
P. L.
Pratt
, “
The influence of orientation on slip and strain hardening of molybdenum single crystals
,”
Phys. Status Solidi (a)
22
,
685
(
1974
).
19.
D.
Veselý
, “
The study of deformation of thin foils of Mo under the electron microscope
,”
Phys. Status Solidi
29
,
675
(
1968
).
20.
D.
Veselý
, “
The study of slip bands on the surface of Mo single crystals
,”
Phys. Status Solidi
29
,
685
(
1968
).
21.
L.
Hollang
,
D.
Brunner
, and
A.
Seeger
, “
Work hardening and flow stress of ultrapure molybdenum single crystals
,”
Mater. Sci. Eng. A
319
,
233
(
2001
).
22.
A.
Seeger
and
L.
Hollang
, “
The flow-stress asymmetry of ultra-pure molybdenum single crystals
,”
Mater. Trans. JIM
41
,
141
(
2000
).
23.
A.
Seeger
, “
The flow stress of high-purity refractory body-centred cubic metals and its modification by atomic defects
,”
Le J. Phys. IV
5
,
C7–45
(
1995
).
24.
C. R.
Weinberger
,
B. L.
Boyce
, and
C. C.
Battaile
, “
Slip planes in bcc transition metals
,”
Int. Mater. Rev.
58
,
296
(
2013
).
25.
L. H.
Yang
,
M.
Tang
, and
J. A.
Moriarty
, “
Dislocations and plasticity in bcc transition metals at high pressure
,”
Dislocations Solids
16
,
1
(
2010
).
26.
D.
Choudhuri
and
Y. M.
Gupta
, “
Shock compression and unloading response of 1050 aluminum to 70 GPa
,”
AIP Conf. Proc.
1426
,
755
(
2012
).
27.
M. D.
Knudson
and
M. P.
Desjarlais
, “
Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime
,”
Phys. Rev. B
88
,
184107
(
2013
).
28.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
(
1972
).
29.
L. M.
Barker
and
K. W.
Schuler
, “
Correction to the velocity-per-fringe relationship for the VISAR interferometer
,”
J. Appl. Phys.
45
,
3692
(
1974
).
30.
D. H.
Dolan
, “Foundations of VISAR analysis,” Sandia National Laboratories Report No. SAND2006–1950 (2006).
31.
W. J.
Carter
, “
Hugoniot equation of state of some alkali halides
,”
High Temp. High Pressur.
5
,
313
(
1973
).
32.
J. N.
Johnson
,
O. E.
Jones
, and
T. E.
Michaels
, “
Dislocation dynamics and single-crystal constitutive relations: Shock-wave propagation and precursor decay
,”
J. Appl. Phys.
41
,
2330
(
1970
).
33.
D. L.
Davidson
and
F. R.
Brotzen
, “
Elastic constants of molybdenum-rich rhenium alloys in the temperature range 190°C to +100°C
,”
J. Appl. Phys.
39
,
5768
(
1968
).
34.
W.
Cai
,
V. V.
Bulatov
,
J.
Chang
,
J.
Li
, and
S.
Yip
, “
Dislocation core effects on mobility
,”
Dislocations Solids
12
,
1
(
2004
).
You do not currently have access to this content.