Correct identification of local configurations of dopants and point defects in random alloys poses a challenge to both computational modeling and experimental characterization methods. In this paper, we propose and implement a computationally efficient approach to address this problem. Combining special quasirandom structures, virtual crystal approximation, and real-space lattice static Green’s functions, we are able to calculate, at moderate computational cost, the local phonon density of states (LPDOSs) of impurities in a random alloy crystal for system sizes, surpassing the capabilities of a conventional, cubic-scaling, density functional theory. We validate this method by showing that our LPDOS predictions of substitutional silicon in GaAs and InAs are in excellent agreement with the experimental data. For the case study, we investigate a variety of local configurations of Si and Se substitutional dopants and cation vacancies in quasirandom In0.5Ga0.5As alloys. In all cases, the impurity LPDOS in a random alloy exhibits qualitatively different signatures from those in the pure binary compounds GaAs and InAs. Specifically, they are characterized by a wide continuous band (rather than narrow discrete peaks) of vibrational modes at frequencies typically higher than the bulk modes, a sign of coupling between localized vibrations of the impurity and those of its random neighboring host atoms. The accuracy and computational cost of this approach open a way to the simulation of impurities in random structures on a large scale and the prediction of vibrational signatures of alloys with defects.

1.
G. B.
Stringfellow
,
Organometallic Vapor-Phase Epitaxy: Theory and Practice
(
Academic
,
Boston
,
1989
).
2.
A.
Mascarenhas
,
Spontaneous Ordering in Semiconductor Alloys
(
Kluwer Academic
,
New York
,
2002
).
3.
V.
Kolkovsky
,
A.
Mesli
,
L.
Dobaczewski
,
N. V.
Abrosimov
,
Z. R.
Źytkiewicz
, and
A. R.
Peaker
,
Phys. Rev. B
74
,
195204
(
2006
).
4.
J.
Newman
, Semiconductors and Semimetals, edited by E. R. Weber (Academic, New York, 1993), Vol. 38, p. 59.
5.
M. D.
McCluskey
,
J. Appl. Phys.
87
,
8
(
2000
).
6.
D. N.
Talwar
,
Phys. Rev. B
52
,
8121
(
1995
).
7.
C.
Göbel
,
K.
Petzke
,
C.
Schrepel
, and
U.
Scherz
,
Eur. Phys. J. B Condens. Matter
11
,
559
(
1999
).
8.
C. D.
Latham
,
R. M.
Nieminen
,
C. J.
Fall
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
Phys. Rev. B
67
,
205206
(
2003
).
9.
H. C.
Alt
,
J. Phys. Condens. Matter
16
,
S3037
(
2004
).
10.
S.
Kurtz
,
J.
Webb
,
L.
Gedvilas
,
D.
Friedman
,
J.
Geisz
,
J.
Olsen
,
R.
King
,
D.
Joslin
, and
N.
Karam
,
Appl. Phys. Lett.
78
,
748
(
2001
).
11.
H. C.
Alt
and
Y. V.
Gomeniuk
,
Phys. Rev. B
70
,
161314
(
2004
).
12.
K.
Köhler
,
J.
Wagner
,
P.
Gesner
,
D.
Serries
,
T.
Geppert
,
M.
Maier
, and
L.
Kirste
,
IEEE Proc.: Optoelectron.
151
,
247
(
2004
).
13.
J.
Wagner
,
K.
Köhler
,
P.
Ganser
, and
M.
Maier
,
Appl. Phys. Lett.
87
,
051913
(
2005
).
14.
T.
Kitatani
,
M.
Kondow
, and
M.
Kudo
,
Jpn. J. Appl. Phys.
40
,
L750
(
2001
).
15.
D. N.
Talwar
,
J. Appl. Phys.
99
,
123505
(
2006
).
16.
C.-W.
Lee
,
B.
Lukose
,
M. O.
Thompson
, and
P.
Clancy
,
Phys. Rev. B
91
,
094108
(
2015
).
17.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
(
2015
).
18.
A. M.
Teweldeberhan
and
S.
Fahy
,
Phys. Rev. B
72
,
195203
(
2005
).
19.
A. M.
Teweldeberhan
and
S.
Fahy
,
Phys. Rev. B
73
,
245215
(
2006
).
20.
A. M.
Teweldeberhan
,
G.
Stenuit
,
S.
Fahy
,
E.
Gallardo
,
S.
Lazić
,
J. M.
Calleja
,
J.
Miguel-Sánchez
,
M.
Montes
,
A.
Hierro
,
R.
Gargallo-Caballero
,
A.
Guzmán
, and
E.
Muñoz
,
Phys. Rev. B
77
,
155208
(
2008
).
21.
A.
Zunger
,
S.-H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
22.
W. M.
Spears
, Cliques, Coloring and Satisfiability: 2nd DIMACS Implementation Challenge, edited by D. S. Johnson and M. A. Trick (American Mathematical Society, 1993), Vol. 26, pp. 533–558.
23.
A.
Baldereschi
,
Phys. Rev. B
7
,
5212
(
1973
).
24.
B. G.
Pfrommer
,
M.
Côté
,
S. G.
Louie
, and
M. L.
Cohen
,
J. Comput. Phys.
131
,
233
(
1997
).
25.
G. J.
Ackland
,
M. C.
Warren
, and
S. J.
Clark
,
J. Phys. Condens. Matter
9
,
7861
(
1997
).
26.
J.
Mendoza
,
E.
Keivan
, and
C.
Gang
,
J. Appl. Phys.
117
,
174301
(
2015
).
27.
M.
Arrigoni
,
J.
Carrete
,
N.
Mingo
, and
G. K. H.
Madsen
,
Phys. Rev. B
98
,
115205
(
2018
).
28.
L.
Shi
and
L.-W.
Wang
,
Phys. Rev. Lett.
109
,
245501
(
2012
).
29.
Y.
Wang
,
S.-L.
Shang
,
H.
Fang
,
Z.-K.
Liu
, and
L.-Q.
Chen
,
Npj Comput. Mater.
2
,
16006
(
2016
).
30.
M.
Stavola
, Semiconductors and Semimetals, edited by M. Stavola (Academic, New York, 1999), Vol. 51B, p. 153.
31.
J. J.
Sinai
,
Phys. Rev. B
54
,
7937
(
1996
).
32.
P. H.
Dederichs
,
R.
Zeller
, and
K.
Schroeder
,
Point Defects in Metals II: Dynamical Properties and Diffusion Controlled Reactions
(
Springer
,
1980
), Vol. 87.
33.
R.
Haydock
,
V.
Heine
, and
M. J.
Kelly
,
J. Phys. C
5
,
2845
(
1972
).
34.
H. S.
Wall
,
Analytical Theory of Continued Fractions
(
Van Nostrand-Reinhold
,
Princeton, NJ
,
1948
).
35.
Z.
Tang
and
N. R.
Aluru
,
Phys. Rev. B
74
,
235441
(
2006
).
36.
B.
Cordero
,
V.
Gómez
,
A. E.
Platero-Prats
,
M.
Revés
,
J.
Echeverría
,
E.
Cremades
,
F.
Barrag
, and
S.
Alvarez
,
Dalton Trans.
2008
,
2832
.
37.
X.
Tao
and
Y.
Gu
,
Nano Lett.
13
(
8
),
3501
3505
(
2013
).
38.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
,
J. Mach. Learn. Res.
12
,
2825
(
2011
).
39.
R.
Murray
,
R. C.
Newman
,
M. J. L.
Sangster
,
R. B.
Beall
,
J. J.
Harris
,
P. J.
Wright
,
J.
Wagner
, and
M.
Ramsteiner
,
J. Appl. Phys.
66
,
2589
(
1989
).
40.
J.
Wagner
,
P.
Koidl
, and
R. C.
Newman
,
Appl. Phys. Lett.
59
,
1729
(
1991
).
41.
M.
Uematsu
,
J. Appl. Phys.
69
,
1781
(
1991
).
42.
G.
Audi
,
A. H.
Wapstra
, and
C.
Thibault
, “
The AME2003 atomic mass evaluation:(II). Tables, graphs and references
,”
Nucl. Phys. A
729
(
1
),
337
676
(
2003
).

Supplementary Material

You do not currently have access to this content.