We have overcome two drawbacks involved in series-connected double-junction (S-2J) and triple-junction (S-3J) photovoltaic cells to compose monolithic modules of artificial photosynthesis consisting of directly connected photovoltaic cells and electrolyzers of the same size. One is current mismatching among the subcells under solar spectrum variation. The other is inefficient utilization of high-energy photons that can generate sufficiently high voltage to promote the target reaction, caused by consumption of two or three photons for extracting a single electron regardless of the photon energies. This arises from the predetermined operating voltage, contrasting to no restriction of the output voltage for solar cells combined with power conditioners. In a series/parallel-connected triple-junction (S/P-3J) photovoltaic cell, the series-connected middle and bottom cells are connected with the top cell in parallel. High-energy photons absorbed in the top cell are efficiently utilized because the photoexcited electrons are directly extracted. Although relative intensities of high-energy photons in the measured solar spectra changes remarkably, the top cell is free from the current matching restriction. On the other hand, current matching between the middle and bottom cells approximately holds, because solar spectrum in the relevant range changes only slightly. Consequently, the S/P-3J significantly improves solar-to-chemical conversion efficiency (ηSTC) and is more advantageous on overcast days owing to the spectral robustness. Using the state-of-the-art electrolyzers, ηSTC = 32%−26% of H2 production by water splitting is estimated on fine and overcast days. CO2 reduction to CO proceeds with ηSTC = 30%−25%. These values are higher than those for the S-2J by 3%−9%.

1.
J. H.
Kim
,
D.
Hansora
,
P.
Sharma
,
J.-W.
Jang
, and
J. S.
Lee
,
Chem. Soc. Rev.
48
,
1908
(
2019
).
2.
J.
Wu
,
Y.
Huang
,
W.
Ye
, and
Y.
Li
,
Adv. Sci.
4
,
1700194
(
2017
).
3.
R.
Sathre
,
C. D.
Scown
,
W. R.
Morrow
 III
,
J. S.
Stevens
,
I. D.
Sharp
,
J. W.
Ager
 III
,
K.
Walczak
,
F. A.
Houle
, and
J. B.
Greenblatt
,
Energy Environ. Sci.
7
,
3264
(
2014
).
4.
O.
Khaselev
and
J. A.
Turner
,
Science
280
,
425
(
1998
).
5.
S. Y.
Reece
,
J. A.
Hamel
,
K.
Sung
,
T. D.
Jarvi
,
A. J.
Esswein
,
J. J. H.
Pijpers
, and
D. G.
Nocera
,
Science
334
,
645
(
2011
).
6.
T.
Arai
,
S.
Sato
, and
T.
Morikawa
,
Energy Environ. Sci.
8
,
1998
(
2015
).
7.
S.
Sato
,
T.
Arai
, and
T.
Morikawa
,
Nanotechnology
29
,
034001
(
2018
).
8.
H.
Park
,
I. J.
Park
,
M. G.
Lee
,
K. C.
Kwon
,
S.-P.
Hong
,
D. H.
Kim
,
S. A.
Lee
,
T. H.
Lee
,
C.
Kim
,
C. W.
Moon
,
D.-Y.
Son
,
G. H.
Jung
,
H. S.
Yang
,
J. R.
Lee
,
J.
Lee
,
N.-G.
Park
,
S. Y.
Kim
,
J. Y.
Kim
, and
H. W.
Jang
,
ACS Appl. Mater. Interfaces
11
,
33835
33843
(
2019
).
9.
W.-H.
Cheng
,
M. H.
Richter
,
I.
Sullivan
,
D. M.
Larson
,
C.
Xiang
,
B. S.
Brunschwig
, and
H. A.
Atwater
,
ACS Energy Lett.
5
,
470
(
2020
).
10.
J.-P.
Becker
,
B.
Turan
,
V.
Smirnov
,
K.
Welter
,
F.
Urbain
,
J.
Wolff
,
S.
Haas
, and
F.
Finger
,
J. Mater. Chem. A
5
,
4818
(
2017
).
11.
S.
Kim
,
T.
Kim
,
S.
Lee
,
S.
Baek
,
T.
Park
, and
K.
Yong
,
Adv. Mater.
29
,
1702431
(
2017
).
12.
F.
Urbain
,
P.
Tang
,
N. M.
Carretero
,
T.
Andreu
,
L. G.
Gerling
,
C.
Voz
,
J.
Arbiol
, and
J. R.
Morante
,
Energy Environ. Sci.
10
,
2256
(
2017
).
13.
S. Y.
Chae
,
S. Y.
Lee
,
S. G.
Han
,
H.
Kim
,
J.
Ko
,
S.
Park
,
O.-S.
Joo
,
D.
Kim
,
Y.
Kang
,
U.
Lee
,
Y. J.
Hwang
, and
B. K.
Min
,
Sustain. Energy Fuels
4
,
199
(
2020
).
14.
A.
Nakamura
,
Y.
Ota
,
K.
Koike
,
Y.
Hidaka
,
K.
Nishioka
,
M.
Sugiyama
, and
K.
Fujii
,
Appl. Phys. Express
8
,
107101
(
2015
).
15.
Y.
Ota
,
D.
Yamashita
,
H.
Nakao
,
Y.
Yonezawa
,
Y.
Nakashima
,
H.
Ebe
,
M.
Inagaki
,
R.
Mikami
,
Y.
Abiko
,
T.
Iwasaki
,
M.
Sugiyama
, and
K.
Nishioka
,
Appl. Phys. Express
11
,
077101
(
2018
).
16.
T. N.
Duc
,
K.
Goshome
,
N.
Endo
, and
T.
Maeda
,
Int. J. Hydrogen Energy
44
,
26741
(
2019
).
17.
M.
Liu
,
Y.
Pang
,
B.
Zhang
,
P.
De Luna
,
O.
Voznyy
,
J.
Xu
,
X.
Zheng
,
C. T.
Dinh
,
F.
Fan
,
C.
Cao
,
F. P. G.
de Arquer
,
T. S.
Safaei
,
A.
Mepham
,
A.
Klinkova
,
E.
Kumacheva
,
T.
Filleter
,
D.
Sinton
,
S. O.
Kelley
, and
E. H.
Sargent
,
Nature
537
,
382
(
2016
).
18.
S.
Verma
,
Y.
Hamasaki
,
C.
Kim
,
W.
Huang
,
S.
Lu
,
H.-R. M.
Jhong
,
A. A.
Gewirth
,
T.
Fujigaya
,
N.
Nakashima
, and
P. J. A.
Kenis
,
ACS Energy Lett.
3
,
193
(
2018
).
19.
S.
Sato
,
K.
Saita
,
K.
Sekizawa
,
S.
Maeda
, and
T.
Morikawa
,
ACS Catal.
8
,
4452
(
2018
).
20.
M. A. Z. G.
Sial
,
S.
Baskaran
,
A.
Jalild
,
S. H.
Talib
,
H.
Lin
,
Y.
Yao
,
Q.
Zhang
,
H.
Qian
,
J.
Zou
, and
X.
Zeng
,
Int. J. Hydrogen Energy
44
,
22991
(
2019
).
21.
S.
Wen
,
T.
Yang
,
N.
Zhao
,
L.
Ma
, and
E.
Liu
,
Appl. Catal. B Environ.
258
,
117953
(
2019
).
22.
T.
Trupke
and
P.
Würfel
,
J. Appl. Phys.
96
,
2347
(
2004
).
23.
Y.
Ahn
,
Y.-H.
Kim
, and
S.-I.
Kim
,
IEEE J. Photovolt.
3
,
1403
(
2013
).
24.
F.
Guo
,
N.
Li
,
F. W.
Fecher
,
N.
Gasparini
,
C. O. R.
Quiroz
,
C.
Bronnbauer
,
Y.
Hou
,
V. V.
Radmilović
,
V. R.
Radmilović
,
E.
Spiecker
,
K.
Forberich
, and
C. J.
Brabec
,
Nat. Commun.
6
,
7730
(
2015
).
25.
New Energy and Industrial Technology Development Organization (NEDO)
, see https://www.nedo.go.jp/library/nissharyou.html for “Solar Radiation Database.”
26.
National Renewable Energy Laboratory
, see https://rredc.nrel.gov/solar//spectra/am1.5/ for “Reference Solar Spectral Irradiance: Air Mass 1.5.”
27.
S.
Nann
and
C.
Riordan
,
J. Appl. Meteorol.
30
,
447
(
1991
).
28.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
29.
U.
Rau
,
Phys. Rev. B
76
,
085303
(
2007
).
30.
M. A.
Green
,
Prog. Photovolt. Res. Appl.
20
,
472
(
2012
).
31.
P.
Würfel
,
J. Phys. C Solid State Phys.
15
,
3967
(
1982
).
32.
K.-H.
Lee
,
K.
Araki
,
L.
Wang
,
N.
Kojima
,
Y.
Ohshita
, and
M.
Yamaguchi
,
Prog. Photovolt. Res. Appl.
24
,
1310
(
2016
).
33.
M.
Yamaguch
,
K.-H.
Lee
,
K.
Araki
,
N.
Kojima
,
H.
Yamada
, and
Y.
Katsumata
,
Prog. Photolt. Res. Appl.
26
,
543
(
2018
).
34.
M.
Nakamura
,
K.
Yamaguchi
,
Y.
Kimoto
,
Y.
Yasaki
,
T.
Kato
, and
H.
Sugimoto
,
IEEE J. Photovolt.
9
,
1863
(
2019
).
35.
E. H.
Jung
,
N. J.
Jeon
,
E. Y.
Park
,
C. S.
Moon
,
T. J.
Shin
,
T.-Y.
Yang
,
J. H.
Noh
, and
J.
Seo
,
Nature
567
,
511
(
2019
).
36.
A.
Luque
and
A.
Martí
,
Phys. Rev. Lett.
78
,
5014
(
1997
).
37.
Y.
Okada
,
N. J.
Ekins-Daukes
,
T.
Kita
,
R.
Tamaki
,
M.
Yoshida
,
A.
Pusch
,
O.
Hess
,
C. C.
Phillips
,
D. J.
Farrell
,
K.
Yoshida
,
N.
Ahsan
,
Y.
Shoji
,
T.
Sogabe
, and
J.-F.
Guillemoles
,
Appl. Phys. Rev.
2
,
021302
(
2015
).
38.
S.
Naitoh
and
Y.
Okada
,
J. Sol. Energy Eng.
137
,
034504
(
2015
).
39.
J. L.
Young
,
M. A.
Steiner
,
H.
Döscher
,
R. M.
France
,
J. A.
Turner
, and
T. G.
Deutsch
,
Nat. Energy
2
,
17028
(
2017
).
40.
S. P.
Philipps
,
F.
Dimroth
, and
A. W.
Bett
, “
High-efficiency III–V multijunction solar cells
,” in
McEvoy’s Handbook of Photovoltaics
, 3rd ed., edited by
S. A.
Kalogirou
(
Academic Press
,
2017
), Chap. I-4-B.
41.
T. K.
Todorov
,
D. M.
Bishop
, and
Y. S.
Lee
,
Sol. Energy Mater. Sol. Cells
180
,
350
(
2018
).
42.
T. C.-J.
Yang
,
P.
Fiala
,
Q.
Jeangros
, and
C.
Ballif
,
Joule
2
,
1421
(
2018
).
43.
Z.
Song
,
C.
Chen
,
C.
Li
,
R. A.
Awni
,
D.
Zhao
, and
Y.
Yan
,
Semicond. Sci. Technol.
34
,
093001
(
2019
).
44.
R.
Cariou
,
J.
Benick
,
F.
Feldmann
,
O.
Höhn
,
H.
Hauser
,
P.
Beutel
,
N.
Razek
,
M.
Wimplinger
,
B.
Bläsi
,
D.
Lackner
,
M.
Hermle
,
G.
Siefer
,
S. W.
Glunz
,
A. W.
Bett
, and
F.
Dimroth
,
Nat. Energy
3
,
326
(
2018
).
45.
F.
Sahli
,
J.
Werner
,
B. A.
Kamino
,
M.
Bräuninger
,
R.
Monnard
,
B.
Paviet-Salomon
,
L.
Barraud
,
L.
Ding
,
J. J.
Diaz Leon
,
D.
Sacchetto
,
G.
Cattaneo
,
M.
Despeisse
,
M.
Boccard
,
S.
Nicolay
,
Q.
Jeangros
,
B.
Niesen
, and
C.
Ballif
,
Nat. Mater.
17
,
820
(
2018
).
46.
J.
Werner
,
F.
Sahli
,
F.
Fu
,
J. J.
Diaz Leon
,
A.
Walter
,
B. A.
Kamino
,
B.
Niesen
,
S.
Nicolay
,
Q.
Jeangros
, and
C.
Ballif
,
ACS Energy Lett.
3
,
2052
(
2018
).
47.
M.
Jaysankar
,
B. A. L.
Raul
,
J.
Bastos
,
C.
Burgess
,
C.
Weijtens
,
M.
Creatore
,
T.
Aernouts
,
Y.
Kuang
,
R.
Gehlhaar
,
A.
Hadipour
, and
J.
Poortmans
,
ACS Energy Lett.
4
,
259
(
2019
).
48.
Z.
Wang
,
X.
Zhu
,
S.
Zuo
,
M.
Chen
,
C.
Zhang
,
C.
Wang
,
X.
Ren
,
Z.
Yang
,
Z.
Liu
,
X.
Xu
,
Q.
Chang
,
S.
Yang
,
F.
Meng
,
Z.
Liu
,
N.
Yuan
,
J.
Ding
,
S.
Liu
, and
D.
Yang
,
Adv. Funct. Mater.
30
,
1908298
(
2020
).
49.
X.
Huang
,
H.
Fu
,
H.
Chen
,
X.
Zhang
,
Z.
Lu
,
J.
Montes
,
M.
Iza
,
S. P.
DenBaars
,
S.
Nakamura
, and
Y.
Zhao
,
Appl. Phys. Lett.
110
,
161105
(
2017
).
50.
J.
Bai
,
Y. P.
Gong
,
Z.
Li
,
Y.
Zhang
, and
T.
Wang
,
Sol. Energy Mater. Sol. Cells
175
,
47
(
2018
).
You do not currently have access to this content.