Diffusion of boron (B) in germanium (Ge) at temperatures ranging between 800°C and 900°C is revisited following the most recent results reported by Uppal et al. [J. Appl. Phys. 96, 1376 (2004)] that have been obtained mainly with implantation doped samples. In this work, we determined the intrinsic B diffusivity by employing epitaxially grown alternating undoped and B-doped Ge layer structures with three different dopant concentrations of 4×1017 cm3, 1×1018 cm3, and 3×1018 cm3. The diffusional broadening of B was analyzed by means of secondary ion mass spectrometry (SIMS) and numerically described to determine the diffusion coefficient. Additional SIMS analyses revealed a gradient in the oxygen (O) background concentration of the epitaxially doped Ge structure. A high O content observed in near-surface regions correlates with enhanced B diffusion. In contrast, B-doped regions with low O content showed a significantly lower B diffusivity representing the intrinsic diffusivity. The B diffusion coefficients are significantly lower compared to literature data and best described by a diffusion activation enthalpy and a pre-exponential factor of (4.09±0.21) eV and 265237+2256 cm2 s1, respectively.

1.
C.
Claeys
and
E.
Simoen
,
Germanium-based Technologies—From Materials to Devices
(
Elsevier
,
Amsterdam
,
2007
).
2.
D. P.
Brunco
,
B.
De Jaeger
,
G.
Eneman
,
J.
Mitard
,
G.
Hellings
,
A.
Satta
,
V.
Terzieva
,
L.
Souriau
,
F. E.
Leys
,
G.
Pourtois
,
M.
Houssa
,
G.
Winderickx
,
E.
Vrancken
,
S.
Sioncke
,
K.
Opsomer
,
G.
Nicholas
,
M.
Caymax
,
A.
Stesmans
,
J.
Van Steenbergen
,
P. W.
Mertens
,
M.
Meuris
, and
M. M.
Heyns
,
J. Electrochem. Soc.
155
,
H552
(
2008
).
3.
E.
Simoen
,
J.
Mitard
,
G.
Hellings
,
G.
Eneman
,
B.
De Jaeger
,
L.
Witters
,
B.
Vincent
,
R.
Loo
,
A.
Delabie
,
S.
Sioncke
,
M.
Caymax
, and
C.
Claeys
,
Mater. Sci. Semicond. Process.
15
,
588
(
2012
).
4.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
).
5.
S.
Matsumoto
and
T.
Niimi
,
J. Electrochem. Soc.
125
,
1307
(
1978
).
6.
C. O.
Chui
,
K.
Gopalakrishnan
,
P. B.
Griffin
,
J. D.
Plummer
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
83
,
3275
(
2003
).
7.
G.
Luo
,
C.-C.
Cheng
,
C.-Y.
Huang
,
S.-L.
Hsu
,
C.-H.
Chien
,
W.-X.
Ni
, and
C.-Y.
Chang
,
Electr. Lett
41
,
1354
(
2005
).
8.
S.
Brotzmann
and
H.
Bracht
,
J. Appl. Phys.
103
,
033508
(
2008
).
9.
S.
Brotzmann
,
H.
Bracht
,
J.
Lundsgaard Hansen
,
A.
Nylandsted Larsen
,
E.
Simoen
,
E. E.
Haller
,
J. S.
Christensen
, and
P.
Werner
,
Phys. Rev. B
77
,
235207
(
2008
).
10.
Th.
Canneaux
,
D.
Mathiot
,
J. P.
Ponpon
,
S.
Roques
,
S.
Schmitt
, and
Ch.
Dubois
,
Mat. Sci. Eng. B
154–155
,
68
(
2008
).
11.
P.
Tsouroutas
,
D.
Tsoukalas
,
I.
Zergioti
,
N.
Cherkashin
, and
A.
Claverie
,
J. Appl. Phys.
105
,
094910
(
2009
).
12.
H.
Bracht
,
S.
Schneider
,
J. N.
Klug
,
C. Y.
Liao
,
J.
Lundsgaard Hansen
,
E. E.
Haller
,
A.
Nylandsted Larsen
,
D.
Bougeard
,
M.
Posselt
, and
C.
Wündisch
,
Phys. Rev. Lett.
103
,
255501
(
2009
).
13.
P.
Tsouroutas
,
D.
Tsoukalas
, and
H.
Bracht
,
J. Appl. Phys.
108
,
024903
(
2010
).
14.
Y.
Cai
,
R.
Camacho-Aguilera
,
J. T.
Bessette
,
L. C.
Kimerling
, and
J.
Michel
,
J. Appl. Phys.
112
,
034509
(
2012
).
15.
E.
Vainonen-Ahlgren
,
T.
Ahlgren
,
J.
Likonen
,
S.
Lehto
,
J.
Keinonen
,
W.
Li
, and
J.
Haapamaa
,
Appl. Phys. Lett.
77
,
690
(
2000
).
16.
H.
Bracht
and
S.
Brotzmann
,
Mater. Sci. Semicond. Process.
9
,
471
(
2006
).
17.
M.
Naganawa
,
Y.
Shimizu
,
M.
Uematsu
,
K. M.
Itoh
,
K.
Sawano
,
Y.
Shiraki
, and
E. E.
Haller
,
Appl. Phys. Lett.
93
,
191905
(
2008
).
18.
G. N.
Wills
,
Solid State Electron.
10
,
1
(
1967
).
19.
S.
Uppal
,
A. F. W.
Willoughby
,
J. M.
Bonar
,
N. E. B.
Cowern
,
T.
Grasby
,
R. J. H.
Morris
, and
M. G.
Dowsett
,
J. Appl. Phys.
96
,
1376
(
2004
).
20.
E.
Bruno
,
S.
Mirabella
,
G.
Scapellato
,
G.
Impellizzeri
,
A.
Terrasi
,
F.
Priolo
,
E.
Napolitani
,
D.
De Salvador
,
M.
Mastromatteo
, and
A.
Carnera
,
Phys. Rev. B
80
,
033204
(
2009
).
21.
E.
Napolitani
,
G.
Bisognin
,
E.
Bruno
,
M.
Mastromatteo
,
G. G.
Scapellato
,
S.
Boninelli
,
D.
De Salvador
,
S.
Mirabella
,
C.
Spinella
,
A.
Carnera
, and
F.
Priolo
,
Appl. Phys. Lett.
96
,
201906
(
2010
).
22.
G. G.
Scapellato
,
E.
Bruno
,
A. J.
Smith
,
E.
Napolitani
,
D.
De Salvador
,
S.
Mirabella
,
M.
Mastromatteo
,
A.
Carnera
,
R.
Gwilliam
, and
F.
Priolo
,
Nucl. Instrum. Methods Phys. Res. B
282
,
8
(
2012
).
23.
S.
Schneider
,
H.
Bracht
,
J. N.
Klug
,
J.
Lundsgaard Hansen
,
A.
Nylandsted Larsen
,
D.
Bougeard
, and
E. E.
Haller
,
Phys. Rev. B
87
,
115202
(
2013
).
24.
P.
Dorner
,
W.
Gust
,
A.
Lodding
,
H.
Odelius
,
B.
Predel
, and
U.
Roll
,
Acta Metall.
30
,
941
(
1982
).
25.
U.
Södervall
,
H.
Odelius
,
A.
Lodding
,
U.
Roll
,
B.
Predel
,
W.
Gust
, and
P.
Dorner
,
Philos. Mag. A
54
,
539
(
1986
).
26.
I.
Riihimäki
,
A.
Virtanen
,
S.
Rinta-Anttila
,
P.
Pusa
,
J.
Räisänen
, and
The ISOLDE Collaboration
,
Appl. Phys. Lett.
91
,
091922
(
2007
).
27.
R.
Kube
,
H.
Bracht
,
A.
Chroneos
,
M.
Posselt
, and
B.
Schmidt
,
J. Appl. Phys.
106
,
063534
(
2009
).
28.
A.
Chroneos
and
H.
Bracht
,
Appl. Phys. Rev.
1
,
011301
(
2014
).
29.
A. R.
Peaker
,
V. P.
Markevich
,
B.
Hamilton
,
I. D.
Hawkins
,
J.
Slotte
,
K.
Kuitunen
,
F.
Tuomisto
,
A.
Satta
,
E.
Simoen
, and
N. V.
Abrosimov
,
Thin Solid Films
517
,
152
(
2008
).
30.
J.
Kujala
,
T.
Südkamp
,
J.
Slotte
,
I.
Makkonen
,
F.
Tuomisto
, and
H.
Bracht
,
J. Phys. Condens. Matter
28
,
335801
(
2016
).
31.
H.
Bracht
,
S.
Schneider
, and
R.
Kube
,
Microelectron. Eng.
88
,
452
(
2011
).
32.
J.
Vanhellemont
and
E.
Simoen
,
Mater. Sci. Semicond. Process.
15
,
642
(
2012
).
33.
T.
Südkamp
,
H.
Bracht
,
G.
Impellizzeri
,
J.
Lundsgaard Hansen
,
A.
Nylandsted Larsen
, and
E. E.
Haller
,
Appl. Phys. Lett.
102
,
242103
(
2013
).
34.
E.
Hüger
,
U.
Tietze
,
D.
Lott
,
H.
Bracht
,
D.
Bougeard
,
E. E.
Haller
, and
H.
Schmidt
,
Appl. Phys. Lett.
93
,
162104
(
2008
).
35.
P.
Delugas
and
V.
Fiorentini
,
Phys. Rev. B
69
,
085203
(
2004
).
36.
C.
Janke
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
J. Mater. Sci. Mater. Electron.
18
,
775
(
2007
).
37.
S.
Mirabella
,
D.
De Salvador
,
E.
Napolitani
,
E.
Bruno
, and
F.
Priolo
,
J. Appl. Phys.
113
,
031101
(
2013
).
38.
E. F.
Smith
,
D.
Briggs
, and
N.
Fairley
,
Surf. Interface Anal.
38
,
69
(
2006
).
39.
T.
Südkamp
, “Characterization of atomic transport in nano-structured silicon and germanium to reveal properties of self- and foreign-atom defects,” Doctoral dissertation (University of Münster, 2018).
40.
Under intrinsic diffusion conditions, the charge states of the individual point defects involved in the diffusion mechanisms do not affect the behavior of dopant diffusion and thus are not significant (see Ref. 41 for overview).
41.
H.
Bracht
,
Phys. Rev. B
75
,
035210
(
2007
).
42.
A.
Chroneos
,
B. P.
Uberuaga
, and
R. W.
Grimes
,
J. Appl. Phys.
102
,
083707
(
2007
).
43.
A.
Chroneos
,
J. Appl. Phys.
107
,
076102
(
2010
).
44.
G. G.
Scapellato
,
S.
Boninelli
,
E.
Napolitani
,
E.
Bruno
,
A. J.
Smith
,
S.
Mirabella
,
M.
Mastromatteo
,
D.
De Salvador
,
R.
Gwilliam
,
C.
Spinella
,
A.
Carnera
, and
F.
Priolo
,
Phys. Rev. B
84
,
024104
(
2011
).
45.
E. N.
Sgourou
,
Y.
Panayiotatos
,
R. V.
Vovk
,
N.
Kuganathan
, and
A.
Chroneos
,
Appl. Sci.
9
,
2454
(
2019
).
You do not currently have access to this content.