The recent demonstration of the growth of two-dimensional (2D) antimony-arsenic alloys provides an additional degree of freedom to tailor the basic properties of the emerging group-V 2D materials. With this perspective, herein, we propose and conduct a comprehensive first-principles investigation on this 2D group-V antimony arsenide (2D AsxSby), in both free-standing form as well as on the common substrates of Ge(111), Si(111), bilayer graphene, and bilayer hexagonal boron nitride (h-BN). Structural and electronic properties of the 2D AsxSby are evaluated for different compositions, different types of atomic arrangements for each composition, and different lattice matched interfacial configurations of the composite heterostructures for the four substrates. These systematic studies provide property benchmarks for this new class of group-V 2D materials. This analysis reveals microscopic origins of the interfacial interactions, orbital hybridization, charge transfer, and the resulting electronic structures of the 2D alloy. We predict that a change in the frontier states leads to an indirect-direct bandgap transition according to atomic arrangements in the monolayer AsxSby. On substrates, the relatively strong interfacial interaction between Ge or Si with AsxSby suppresses the semiconducting properties exhibited in free layers, while the weak van der Waals interaction between graphene or h-BN with AsxSby preserves the bands of the alloy. We conclude that 2D group-V alloys AsxSby give a large material phase-space with very interesting electronic properties.

1.
S.
Cahangirov
,
M.
Topsakal
,
E.
Aktürk
,
H.
Şahin
, and
S.
Ciraci
, “
Two- and one-dimensional honeycomb structures of silicon and germanium
,”
Phys. Rev. Lett.
102
,
236804
(
2009
).
2.
D.
Jose
and
A.
Datta
, “
Understanding of the buckling distortions in silicene
,”
J. Phys. Chem. C
116
,
24639
24648
(
2012
).
3.
Y.
Wang
and
Y.
Ding
, “
Strain-induced self-doping in silicene and germanene from first-principles
,”
Solid State Commun.
155
,
6
11
(
2013
).
4.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
(
2012
).
5.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L.-J.
Li
,
K. P.
Loh
, and
H.
Zhang
, “
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
,”
Nat. Chem.
5
,
263
(
2013
).
6.
Z. H.
Ni
,
T.
Yu
,
Y. H.
Lu
,
Y. Y.
Wang
,
Y. P.
Feng
, and
Z. X.
Shen
, “
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
,”
ACS Nano
2
,
2301
2305
(
2008
).
7.
T.
Ohta
,
A.
Bostwick
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
, “
Controlling the electronic structure of bilayer graphene
,”
Science
313
,
951
954
(
2006
).
8.
E. V.
Castro
,
K.
Novoselov
,
S.
Morozov
,
N.
Peres
,
J. L.
Dos Santos
,
J.
Nilsson
,
F.
Guinea
,
A.
Geim
, and
A. C.
Neto
, “
Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
,”
Phys. Rev. Lett.
99
,
216802
(
2007
).
9.
B.
Radisavljevic
and
A.
Kis
, “
Mobility engineering and a metal–insulator transition in monolayer MoS2
,”
Nat. Mater.
12
,
815
(
2013
).
10.
Y.
Zhang
,
J.
Ye
,
Y.
Matsuhashi
, and
Y.
Iwasa
, “
Ambipolar MoS2 thin flake transistors
,”
Nano Lett.
12
,
1136
1140
(
2012
).
11.
Z.
Zhu
and
D.
Tománek
, “
Semiconducting layered blue phosphorus: A computational study
,”
Phys. Rev. Lett.
112
,
176802
(
2014
).
12.
J.
Qiao
,
X.
Kong
,
Z.-X.
Hu
,
F.
Yang
, and
W.
Ji
, “
High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
,”
Nat. Commun.
5
,
4475
(
2014
).
13.
C.
Wang
,
Q.
Xia
,
Y.
Nie
, and
G.
Guo
, “
Strain-induced gap transition and anisotropic Dirac-like cones in monolayer and bilayer phosphorene
,”
J. Appl. Phys.
117
,
124302
(
2015
).
14.
V. O.
Özcelik
,
O. Ü.
Aktürk
,
E.
Durgun
, and
S.
Ciraci
, “
Prediction of a two-dimensional crystalline structure of nitrogen atoms
,”
Phys. Rev. B
92
,
125420
(
2015
).
15.
F.
Ersan
,
E.
Aktürk
, and
S.
Ciraci
, “
Stable single-layer structure of group-V elements
,”
Phys. Rev. B
94
,
245417
(
2016
).
16.
E.
Aktürk
,
O.
Ü. Aktürk
, and
S.
Ciraci
, “
Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties
,”
Phys. Rev. B
94
,
014115
(
2016
).
17.
S.
Zhang
,
Z.
Yan
,
Y.
Li
,
Z.
Chen
, and
H.
Zeng
, “
Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions
,”
Angew. Chem.
127
,
3155
3158
(
2015
).
18.
F.
Ersan
,
E.
Akturk
, and
S.
Ciraci
, “
Stable, one-dimensional suspended and supported monatomic chains of pnictogens: A metal-insulator framework
,”
Phys. Chem. Chem. Phys.
21
,
14832
14845
(
2019
).
19.
F.
Ersan
,
D.
Kecik
,
V.
Özçelik
,
Y.
Kadioglu
,
O. Ü.
Aktürk
,
E.
Durgun
,
E.
Aktürk
, and
S.
Ciraci
, “
Two-dimensional pnictogens: A review of recent progresses and future research directions
,”
Appl. Phys. Rev.
6
,
021308
(
2019
).
20.
Z.-G.
Shao
,
X.-S.
Ye
,
L.
Yang
, and
C.-L.
Wang
, “
First-principles calculation of intrinsic carrier mobility of silicene
,”
J. Appl. Phys.
114
,
093712
(
2013
).
21.
J.
Guan
,
Z.
Zhu
, and
D.
Tománek
, “
Tiling phosphorene
,”
ACS Nano
8
,
12763
12768
(
2014
).
22.
C.
Kamal
and
M.
Ezawa
, “
Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems
,”
Phys. Rev. B
91
,
085423
(
2015
).
23.
Z.
Liu
,
C.-X.
Liu
,
Y.-S.
Wu
,
W.-H.
Duan
,
F.
Liu
, and
J.
Wu
, “
Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study
,”
Phys. Rev. Lett.
107
,
136805
(
2011
).
24.
M.
Wada
,
S.
Murakami
,
F.
Freimuth
, and
G.
Bihlmayer
, “
Localized edge states in two-dimensional topological insulators: Ultrathin Bi films
,”
Phys. Rev. B
83
,
121310
(
2011
).
25.
M.
Fortin-Deschênes
,
O.
Waller
,
T.
Mentes
,
A.
Locatelli
,
S.
Mukherjee
,
F.
Genuzio
,
P.
Levesque
,
A.
Hébert
,
R.
Martel
, and
O.
Moutanabbir
, “
Synthesis of antimonene on germanium
,”
Nano Lett.
17
,
4970
4975
(
2017
).
26.
P.
Zhang
,
Z.
Liu
,
W.
Duan
,
F.
Liu
, and
J.
Wu
, “
Topological and electronic transitions in a Sb(111) nanofilm: The interplay between quantum confinement and surface effect
,”
Phys. Rev. B
85
,
201410
(
2012
).
27.
J.
Ji
,
X.
Song
,
J.
Liu
,
Z.
Yan
,
C.
Huo
,
S.
Zhang
,
M.
Su
,
L.
Liao
,
W.
Wang
,
Z.
Ni
et al., “
Two-dimensional antimonene single crystals grown by van der Waals epitaxy
,”
Nat. Commun.
7
,
13352
(
2016
).
28.
X.
Wu
,
Y.
Shao
,
H.
Liu
,
Z.
Feng
,
Y.-L.
Wang
,
J.-T.
Sun
,
C.
Liu
,
J.-O.
Wang
,
Z.-L.
Liu
, and
S.-Y.
Zhu
, “
Epitaxial growth and air-stability of monolayer antimonene on PdTe2
,”
Adv. Mater.
29
,
1605407
(
2017
).
29.
Y.
Shao
,
Z.-L.
Liu
,
C.
Cheng
,
X.
Wu
,
H.
Liu
,
C.
Liu
,
J.-O.
Wang
,
S.-Y.
Zhu
,
Y.-Q.
Wang
, and
D.-X.
Shi
, “
Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene
,”
Nano Lett.
18
,
2133
2139
(
2018
).
30.
Y.-H.
Mao
,
L.-F.
Zhang
,
H.-L.
Wang
,
H.
Shan
,
X.-F.
Zhai
,
Z.-P.
Hu
,
A.-D.
Zhao
, and
B.
Wang
, “
Epitaxial growth of highly strained antimonene on Ag (111)
,”
Front. Phys.
13
,
138106
(
2018
).
31.
Z.-Q.
Shi
,
H.
Li
,
Q.-Q.
Yuan
,
Y.-H.
Song
,
Y.-Y.
Lv
,
W.
Shi
,
Z.-Y.
Jia
,
L.
Gao
,
Y.-B.
Chen
, and
W.
Zhu
, “
Van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure
,”
Adv. Mater.
31
,
1806130
(
2019
).
32.
L.
Kou
,
Y.
Ma
,
X.
Tan
,
T.
Frauenheim
,
A.
Du
, and
S.
Smith
, “
Structural and electronic properties of layered arsenic and antimony arsenide
,”
J. Phys. Chem. C
119
,
6918
6922
(
2015
).
33.
Z.
Zhu
,
J.
Guan
, and
D.
Tománek
, “
Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A computational study
,”
Phys. Rev. B
91
,
161404
(
2015
).
34.
N.
Zhao
,
Y.
Zhu
, and
Q.
Jiang
, “
Novel electronic properties of two-dimensional AsxSby alloys studied using DFT
,”
J. Mater. Chem. C
6
,
2854
2861
(
2018
).
35.
M.
Ezawa
, “
A topological insulator and helical zero mode in silicene under an inhomogeneous electric field
,”
New J. Phys.
14
,
033003
(
2012
).
36.
D.
Wang
,
L.
Chen
,
H.
Liu
, and
X.
Wang
, “
Topological phase transitions in Sb (111) films driven by external strain and electric field
,”
Europhys. Lett.
104
,
57011
(
2014
).
37.
Y.
Ma
,
Y.
Dai
,
L.
Kou
,
T.
Frauenheim
, and
T.
Heine
, “
Robust two-dimensional topological insulators in methyl-functionalized bismuth, antimony, and lead bilayer films
,”
Nano Lett.
15
,
1083
1089
(
2015
).
38.
K.-H.
Jin
and
S.-H.
Jhi
, “
Quantum anomalous Hall and quantum spin-Hall phases in flattened Bi and Sb bilayers
,”
Sci. Rep.
5
,
8426
(
2015
).
39.
M.
Fortin-Deschênes
,
O.
Waller
,
Q.
An
,
H.
Guo
, and
O.
Moutanabbir
, “
2D antimony-arsenic alloys
,”
Small
(published online).
40.
W.
Yu
,
C.-Y.
Niu
,
Z.
Zhu
,
X.
Wang
, and
W.-B.
Zhang
, “
Atomically thin binary V–V compound semiconductor: A first-principles study
,”
J. Mater. Chem. C
4
,
6581
6587
(
2016
).
41.
S.-D.
Guo
and
J.-T.
Liu
, “
Lower lattice thermal conductivity in SbAs than As or Sb monolayers: A first-principles study
,”
Phys. Chem. Chem. Phys.
19
,
31982
31988
(
2017
).
42.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
43.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
44.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
45.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Van der Waals density functionals applied to solids
,”
Phys. Rev. B
83
,
195131
(
2011
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
47.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
48.
J.
Heyd
,
G.
Scuseria
, and
M.
Ernzerhof
, “
Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
,”
J. Chem. Phys.
124
,
219906
(
2006
).
49.
J.
Shah
,
W.
Wang
,
H.
Sohail
, and
R.
Uhrberg
, “
Experimental evidence of monolayer arsenene: An exotic two-dimensional semiconducting material
,” 2D Materials (to be published).
50.
N. C.
Norman
,
Chemistry of Arsenic, Antimony and Bismuth
(
Springer Science & Business Media
,
1997
).
51.
D.
Schiferl
and
C.
Barrett
, “
The crystal structure of arsenic at 4.2, 78 and 299 K
,”
J. Appl. Crystallogr.
2
,
30
36
(
1969
).
52.
C.
Barrett
,
P.
Cucka
, and
K.
Haefner
, “
The crystal structure of antimony at 4.2, 78 and 298 K
,”
Acta Crystallogr.
16
,
451
453
(
1963
).
53.
A.
Fasolino
,
J.
Los
, and
M. I.
Katsnelson
, “
Intrinsic ripples in graphene
,”
Nat. Mater.
6
,
858
(
2007
).
54.
K.
Sugawara
,
T.
Sato
,
S.
Souma
,
T.
Takahashi
,
M.
Arai
, and
T.
Sasaki
, “
Fermi surface and anisotropic spin-orbit coupling of Sb (111) studied by angle-resolved photoemission spectroscopy
,”
Phys. Rev. Lett.
96
,
046411
(
2006
).
55.
D.
Hsieh
,
Y.
Xia
,
L.
Wray
,
D.
Qian
, and
A.
Pal
, “
Observation of unconventional quantum spin textures in topological insulators
,”
Science
323
,
919
922
(
2009
).
56.
O.
Madelung
,
Semiconductors: Data Handbook
(
Springer Science & Business Media
,
2012
).
57.
S.
Zhang
,
M.
Xie
,
F.
Li
,
Z.
Yan
,
Y.
Li
,
E.
Kan
,
W.
Liu
,
Z.
Chen
, and
H.
Zeng
, “
Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities
,”
Angew. Chem. Int. Ed.
55
,
1666
1669
(
2016
).
58.
S.
Zhang
,
M.
Xie
,
B.
Cai
,
H.
Zhang
,
Y.
Ma
,
Z.
Chen
,
Z.
Zhu
,
Z.
Hu
, and
H.
Zeng
, “
Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain
,”
Phys. Rev. B
93
,
245303
(
2016
).
59.
P.
Ares
,
F.
Aguilar-Galindo
,
D.
Rodríguez-San-Miguel
,
D. A.
Aldave
,
S.
Díaz-Tendero
,
M.
Alcamí
,
F.
Martín
,
J.
Gómez-Herrero
, and
F.
Zamora
, “
Antimonene: Mechanical isolation of highly stable antimonene under ambient conditions
,”
Adv. Mater.
28
,
6515
6515
(
2016
).
60.
C.
Gibaja
,
D.
Rodriguez-San-Miguel
,
P.
Ares
,
J.
Gómez-Herrero
,
M.
Varela
,
R.
Gillen
,
J.
Maultzsch
,
F.
Hauke
,
A.
Hirsch
,
G.
Abellán
et al., “
Few-layer antimonene by liquid-phase exfoliation
,”
Angew. Chem. Int. Ed.
55
,
14345
14349
(
2016
).
61.
M.
Fortin-Deschênes
and
O.
Moutanabbir
, “
Recovering the semiconductor properties of the epitaxial group V 2D materials antimonene and arsenene
,”
J. Phys. Chem. C
122
,
9162
9168
(
2018
).
62.
X.
Sun
,
Z.
Lu
,
Y.
Xiang
,
Y.
Wang
,
J.
Shi
,
G.-C.
Wang
,
M. A.
Washington
, and
T.-M.
Lu
, “
Van der Waals epitaxy of antimony islands, sheets, and thin films on single-crystalline graphene
,”
ACS Nano
12
,
6100
6108
(
2018
).
63.
M.
Fortin-Deschênes
,
R. M.
Jacobberger
,
C.-A.
Deslauriers
,
O.
Waller
,
É.
Bouthillier
,
M. S.
Arnold
, and
O.
Moutanabbir
, “
Dynamics of antimonene–graphene van der Waals growth
,”
Adv. Mater.
31
,
1900569
(
2019
).
64.
P.
Pyykkö
and
M.
Atsumi
, “
Molecular single-bond covalent radii for elements 1–118
,”
Chem. A Eur. J.
15
,
186
197
(
2009
).
65.
Y.
Wang
,
J.
Li
,
J.
Xiong
,
Y.
Pan
,
M.
Ye
,
Y.
Guo
,
H.
Zhang
,
R.
Quhe
, and
J.
Lu
, “
Does the Dirac cone of germanene exist on metal substrates?
,”
Phys. Chem. Chem. Phys.
18
,
19451
19456
(
2016
).
66.
R.
Quhe
,
Y.
Yuan
,
J.
Zheng
,
Y.
Wang
,
Z.
Ni
,
J.
Shi
,
D.
Yu
,
J.
Yang
, and
J.
Lu
, “
Does the Dirac cone exist in silicene on metal substrates?
,”
Sci. Rep.
4
,
5476
(
2014
).
67.
Y.
Guo
,
F.
Pan
,
M.
Ye
,
Y.
Wang
,
Y.
Pan
,
X.
Zhang
,
J.
Li
,
H.
Zhang
, and
J.
Lu
, “
Interfacial properties of stanene–metal contacts
,”
2D Mater.
3
,
035020
(
2016
).
68.
J.
Sforzini
,
L.
Nemec
,
T.
Denig
,
B.
Stadtmüller
,
T.-L.
Lee
,
C.
Kumpf
,
S.
Soubatch
,
U.
Starke
,
P.
Rinke
, and
V.
Blum
, “
Approaching truly freestanding graphene: The structure of hydrogen-intercalated graphene on 6H–SiC (0001)
,”
Phys. Rev. Lett.
114
,
106804
(
2015
).
69.
L.
Huang
,
N.
Huo
,
Y.
Li
,
H.
Chen
,
J.
Yang
,
Z.
Wei
,
J.
Li
, and
S.-S.
Li
, “
Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals pn heterostructure
,”
J. Phys. Chem. Lett.
6
,
2483
2488
(
2015
).
70.
Y.
Ma
,
X.
Zhao
,
T.
Wang
,
W.
Li
,
X.
Wang
,
S.
Chang
,
Y.
Li
,
M.
Zhao
, and
X.
Dai
, “
Band structure engineering in a MoS2/PbI2 van der Waals heterostructure via an external electric field
,”
Phys. Chem. Chem. Phys.
18
,
28466
28473
(
2016
).
71.
M.
Sun
,
J.-P.
Chou
,
Q.
Ren
,
Y.
Zhao
,
J.
Yu
, and
W.
Tang
, “
Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN
,”
Appl. Phys. Lett.
110
,
173105
(
2017
).
72.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
A fast and robust algorithm for Bader decomposition of charge density
,”
Comput. Mater. Sci.
36
,
354
360
(
2006
).
73.
J.-H.
Wong
,
B.-R.
Wu
, and
M.-F.
Lin
, “
Strain effect on the electronic properties of single layer and bilayer graphene
,”
J. Phys. Chem. C
116
,
8271
8277
(
2012
).

Supplementary Material

You do not currently have access to this content.