Multiply twinned particles (MTPs) are fascinating crystallographic entities with a number of controllable properties originating from their symmetry and cyclic structure. In the focus of our studies are diamond MTPs hosting optically active defects—objects demonstrating high application potential for emerging optoelectronic and quantum devices. In this work, we discuss the growth mechanisms along with the microstructural and optical properties of the MTPs aggregating a high-density of “silicon-vacancy” complexes on the specific crystal irregularities. It is demonstrated that the silicon impurities incite a rapid growth of MTPs via intensive formation of penetration twins on {100} facets of regular octahedral grains. We also show that the zero-phonon-line emission from the Si color centers embedded in the twin boundaries dominates in photo- and electroluminescence spectra of the MTP-based light-emitting devices defining their steady-state optical properties.

1.
P.
Rath
,
S.
Khasminskaya
,
C.
Nebel
,
C.
Wild
, and
W. H. P.
Pernice
,
Nat. Commun.
4
,
1690
(
2013
).
2.
J.
Rodriguez-Madrid
,
G.
Iriarte
,
J.
Pedros
,
O. A.
Williams
,
D.
Brink
, and
F.
Calle
,
IEEE Electron Device Lett.
33
,
495
(
2012
).
3.
Power Electronics Device Applications of Diamond Semiconductors
, edited by
S.
Koizumi
,
H.
Umezawa
,
J.
Pernot
, and
M.
Suzuki
(
Woodhead Publishing
,
2018
), Chap. 6.
4.
R.
Nelz
,
J.
Görlitz
,
D.
Herrmann
,
A.
Slablab
,
M.
Challier
,
M.
Radtke
,
M.
Fischer
,
S.
Gsell
,
M.
Schreck
,
C.
Becher
, and
E.
Neu
,
APL Mater.
7
,
011108
(
2019
).
5.
N.
Tokuda
, “
Homoepitaxial diamond growth by plasma-enhanced chemical vapor deposition
,” in
Novel Aspects of Diamond, Topics in Applied Physics
Vol. 121, edited by
N.
Yang
(
Springer
,
2015
), Chap. 1.
6.
M.
Schreck
,
S.
Gsell
,
R.
Brescia
, and
M.
Fischer
,
Sci. Rep.
7
,
44462
(
2017
).
7.
I.
Aharonovich
,
S.
Castelletto
,
D. A.
Simpson
,
C.-H.
Su
,
A. D.
Greentree
, and
S.
Prawer
,
Rep. Prog. Phys.
74
,
076501
(
2011
).
8.
L.
Rondin
,
J.-P.
Tetienne
,
T.
Hingant
,
J.-F.
Roch
,
P.
Maletinsky
, and
V.
Jacques
,
Rep. Prog. Phys.
77
,
056503
(
2014
).
9.
P.
Neumann
,
I.
Jakobi
,
F.
Dolde
,
C.
Burk
,
R.
Reuter
,
G.
Waldherr
,
J.
Honert
,
T.
Wolf
,
A.
Brunner
,
J. H.
Shim
,
D.
Suter
,
H.
Sumiya
,
J.
Isoya
, and
J.
Wrachtrup
,
Nano Lett.
13
,
2738
(
2013
).
10.
J.
Michaelis
,
C.
Hettich
,
J.
Mlynek
, and
V.
Sandoghdar
,
Nature
405
,
325
(
2000
).
11.
M.-A.
Lemonde
,
S.
Meesala
,
A.
Sipahigil
,
M. J. A.
Schuetz
,
M. D.
Lukin
,
M.
Loncar
, and
P.
Rabl
,
Phys. Rev. Lett.
120
,
213603
(
2018
).
12.
B.
Tegetmeyer
,
C.
Schreyvogel
,
N.
Lang
,
W.
Müller-Sebert
,
D.
Brink
, and
C. E.
Nebel
,
Diam. Relat. Mater.
65
,
42
(
2016
);
B.
Tegetmeyer
,
G.
Lewes-Malandrakis
,
M.
Wernet
,
C.
Schreyvogel
,
N.
Lang
,
T.
Yoshikawa
, and
C. E.
Nebel
,
Diam. Relat. Mater.
65
,
87
(
2016
).
13.
V.
Lebedev
,
T.
Yoshikawa
,
C.
Giese
,
L.
Kirste
,
A.
Žukauskaitė
,
A.
Graff
,
F.
Meyer
,
F.
Burmeister
, and
O.
Ambacher
,
J. Appl. Phys.
125
,
075305
(
2019
).
14.
T.
Yoshikawa
,
D.
Herrling
,
F.
Meyer
,
F.
Burmeister
,
C. E.
Nebel
,
O.
Ambacher
, and
V.
Lebedev
,
J. Vac. Sci. Technol. B
37
,
021207
(
2019
).
15.
V.
Lebedev
,
V.
Cimalla
,
U.
Kaiser
,
C.
Foerster
,
J.
Pezoldt
, and
O.
Ambacher
,
J. Appl. Phys.
97
,
114306
(
2005
).
16.
P. W.
May
,
J. N.
Harvey
,
N. L.
Allan
,
J. C.
Richley
, and
Y. A.
Mankelevich
,
J. Appl. Phys.
108
,
014905
(
2010
).
17.
K.
Larsson
and
J.-O.
Carlsson
,
Phys. Rev. B
59
,
8315
(
1999
).
18.
C.
Wild
,
R.
Kohl
,
N.
Herres
,
W.
Müller-Sebert
, and
P.
Koidl
,
Diam. Relat. Mater.
3
,
373
(
1994
).
19.
M. A.
Tamor
and
M. P.
Everson
,
J. Mater. Res.
9
,
1839
(
1994
).
20.
C.
Wild
,
P.
Koidl
,
W.
Müller-Sebert
,
H.
Walcher
,
R.
Kohl
,
N.
Herres
,
R.
Locher
,
R.
Samlenski
, and
R.
Brenn
,
Diam. Relat. Mater.
2
,
158
(
1993
).
21.
J. E.
Butler
and
I.
Oleynik
,
Philos. Trans. R. Soc. A
366
,
295
(
2008
).
22.
X.
Liu
,
H.
Qiao
,
C.
Kang
,
Y.
Ren
,
X.
Tan
, and
S.
Sun
,
Appl. Surf. Sci.
420
,
542
(
2017
).
23.
E.
Neu
,
C.
Hepp
,
M.
Hauschild
,
S.
Gsell
,
M.
Fischer
,
H.
Sternschulte
,
D.
Steinmüller-Neth
,
M.
Schreck
, and
C.
Becher
,
New J. Phys.
15
,
043005
(
2013
).
24.
K.
Bray
,
R.
Sandstrom
,
C.
Elbadawi
,
M.
Fischer
,
M.
Schreck
,
O.
Shimoni
,
C.
Lobo
,
M.
Toth
, and
I.
Aharonovich
,
ACS Appl. Mater. Interfaces
8
,
7590
(
2016
).
25.
C.
Schreyvogel
,
V.
Polyakov
,
R.
Wunderlich
,
J.
Meijer
, and
C. E.
Nebel
,
Sci. Rep.
5
,
12160
(
2015
).
26.
E.
Blank
, “
Structural imperfections in CVD diamond films
,” in
Thin-Film Diamond
, 1st ed., edited by
C. E.
Nebel
and
J.
Ristein
(
Elsevier
,
2003
), Vol. 76, p. 59.
27.
V.
Lebedev
,
J.
Jinschek
,
U.
Kaiser
,
B.
Schröter
,
W.
Richter
, and
J.
Kräußlich
.
Appl. Phys. Lett.
76
,
2029
(
2000
).
28.
A. V.
Hamza
,
G. D.
Kubiak
, and
R. H.
Stulen
,
Surf. Sci.
237
,
35
(
1990
).
29.
J. M.
Lannon
,
J. S.
Gold
, and
C. D.
Stinespring
,
Appl. Phys. Lett.
73
,
226
(
1998
).
30.
C. D.
Stinespring
and
J.
Wormhoudt
,
J. Appl. Phys.
65
,
1733
(
1989
).
31.
E.
Butler
,
Y. A.
Mankelevich
,
A.
Cheesman
,
J.
Ma
, and
M. N. R.
Ashfold
,
J. Phys. Condens. Matter
21
,
364201
(
2009
).
32.
J. C.
Angus
and
C. C.
Hayman
,
Science
241
,
913
(
1988
).
33.
A.
Bolshakov
,
V.
Ralchenko
,
V.
Sedov
,
A.
Khomich
,
I.
Vlasov
,
A.
Khomich
,
N.
Trofimov
,
V.
Krivobok
,
S.
Nikolaev
,
R.
Khmelnitskii
, and
V.
Saraykin
,
Phys. Status Solidi A
212
,
2525
(
2015
).
34.
S.
Breuer
and
P.
Briddon
,
Phys. Rev. B
51
,
6984
(
1995
).
35.
J. P.
Goss
,
R.
Jones
,
S. J.
Breuer
,
P. R.
Briddon
, and
S.
Öberg
,
Phys. Rev. Lett.
77
,
3041
(
1996
).
36.
L. J.
Rogers
,
K. D.
Jahnke
,
M. W.
Doherty
,
A.
Dietrich
,
L. P.
McGuinness
,
C.
Muller
,
T.
Teraji
,
H.
Sumiya
,
J.
Isoya
,
N. B.
Manson
, and
F.
Jelezko
,
Phys. Rev. B
89
,
235101
(
2014
).
37.
E.
Neu
,
D.
Steinmetz
,
J.
Riedrich-Möller
,
S.
Gsell
,
M.
Fischer
,
M.
Schreck
, and
C.
Becher
,
New J. Phys.
13
,
025012
(
2011
).
You do not currently have access to this content.