In the present study, Cu-based nanomaterials are synthesized by initiating spark discharges between two copper electrodes immersed in de-ionized water. The electrical conductivity of water is varied by adding HCl at very low concentrations. The discharge and water properties are determined by measuring the current-voltage waveforms and monitoring water acidity and conductivity, respectively. Scanning electron and transmission electron microscopy analyses of the produced nanoparticles show that increasing water conductivity, by adding HCl, promotes the synthesis of Cu-based nanomaterials. Depending on the initial water conductivity, various nanostructures are observed, including nanoflakes of cuprite (Cu2O), dendrites with high Cu content, and unordered micrometric aggregates with a mixed Cu/Cu2O content. The initial water conductivity also affects the chemical structure, mainly the relative Cu/Cu2O crystalline content.

1.
C.
Richmonds
and
R. M.
Sankaran
, “
Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations
,”
Appl. Phys. Lett.
93
(
13
),
131501
(
2008
).
2.
T.
Belmonte
,
A.
Hamdan
,
F.
Kosior
,
C.
Noël
, and
G.
Henrion
, “
Interaction of discharges with electrode surfaces in dielectric liquids: Application to nanoparticle synthesis
,”
J. Phys. D Appl. Phys.
47
(
22
),
224016
(
2014
).
3.
M. B.
Gawande
 et al., “
Cu and Cu-based nanoparticles: Synthesis and applications in catalysis
,”
Chem. Rev.
116
(
6
),
3722
3811
(
2016
).
4.
A.
Hamdan
,
C.
Noël
,
J.
Ghanbaja
, and
T.
Belmonte
, “
Comparison of aluminium nanostructures created by discharges in various dielectric liquids
,”
Plasma Chem. Plasma Process.
34
(
5
),
1101
1114
(
2014
).
5.
A.
Hamdan
,
H.
Kabbara
,
C.
Noël
,
J.
Ghanbaja
,
A.
Redjaimia
, and
T.
Belmonte
, “
Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen
,”
Particuology
40
,
152
159
(
2018
).
6.
N.
Sano
,
H.
Wang
,
M.
Chhowalla
,
I.
Alexandrou
, and
G. A. J.
Amaratunga
, “
Synthesis of carbon ‘onions’ in water
,”
Nature
414
(
6863
),
506
507
(
2001
).
7.
L.-C.
Chen
and
S.-H.
Pai
, “
In-situ measurement and control of electric discharge on submerged arc synthesis process for continuous TiO2 nanoparticle fabrication
,”
Mater. Trans.
45
(
10
),
3071
3078
(
2004
).
8.
L. C.
Chen
,
D. C.
Tien
,
N.
Van Thai
, and
S.
Ashraf
, “
Study of Ag and Au nanoparticles synthesized by Arc discharge in deionized water
,”
J. Nanomater.
2010
,
634757
.
9.
H.
Park
,
S.
Yoo
, and
K.
Kim
, “
Synthesis of carbon-coated TiO2 by underwater discharge with capillary carbon electrode
,”
IEEE Trans. Plasma Sci.
47
(
2
),
1482
1486
(
2019
).
10.
A.
Hamdan
,
C.
Noël
,
J.
Ghanbaja
,
S.
Migot-Choux
, and
T.
Belmonte
, “
Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane
,”
Mater. Chem. Phys.
142
(
1
),
199
206
(
2013
).
11.
M.
Heinemann
,
B.
Eifert
, and
C.
Heiliger
, “
Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3
,”
Phys. Rev. B
87
(
11
),
115111
(
2013
).
12.
R.
Kaur
and
B.
Pal
, “
Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis
,”
Appl. Catal. A
491
,
28
36
(
2015
).
13.
S. E.
Allen
,
R. R.
Walvoord
,
R.
Padilla-Salinas
, and
M. C.
Kozlowski
, “
Aerobic copper-catalyzed organic reactions
,”
Chem. Rev.
113
(
8
),
6234
6458
(
2013
).
14.
C. R.
Iordanescu
,
D.
Tenciu
,
I. D.
Feraru
,
A.
Kiss
,
M.
Bercu
,
D.
Savastru
,
R.
Notonier
, and
C. E. A.
Grigorescu
, “
Structure and morphology of Cu-oxides films derived from PLD processes
,”
Dig. J. Nanomater. Bios.
6
(
2
),
863
868
(
2011
).
15.
A.
Hamdan
,
C.
Noel
,
F.
Kosior
,
G.
Henrion
, and
T.
Belmonte
, “
Impacts created on various materials by micro-discharges in heptane: Influence of the dissipated charge
,”
J. Appl. Phys.
113
(
4
),
043301
(
2013
).
16.
Y.
Hattori
,
S.
Mukasa
,
H.
Toyota
,
T.
Inoue
, and
S.
Nomura
, “
Synthesis of zinc and zinc oxide nanoparticles from zinc electrode using plasma in liquid
,”
Mater. Lett.
65
(
2
),
188
190
(
2011
).
17.
Š.
Potocký
,
N.
Saito
, and
O.
Takai
, “
Needle electrode erosion in water plasma discharge
,”
Thin Solid Films
518
(
3
),
918
923
(
2009
).
18.
K.
He
 et al., “
Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
,”
Nat. Commun.
7
(
May
),
11441
(
2016
).
19.
P.
Baggethun
, see https://imagej.nih.gov/ij/plugins/radial-profile.html for “Radial profile plot” (
2002
).
20.
A.
Altaweel
, “Synthèse de nanostructures d’oxyde de cuivre par micro-post-décharge micro-ondes à pression atmosphérique,” doctoral thesis, Université de Lorraine, 2018.
21.
R. K.
Swarnkar
,
S. C.
Singh
, and
R.
Gopal
, “
Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water: Structural and optical characterizations
,”
Bull. Mater. Sci.
34
(
7
),
1363
1369
(
2011
).
22.
I.
Cameán
 et al., “
Influence of the inherent metal species on the graphitization of methane-based carbon nanofibers
,”
Carbon
50
(
15
),
5387
5394
(
2012
).
23.
X.
Glad
,
L.
De Poucques
,
J. A.
Jaszczak
,
M.
Belmahi
,
J.
Ghanbaja
, and
J.
Bougdira
, “
Plasma synthesis of hexagonal-pyramidal graphite hillocks
,”
Carbon
76
,
330
340
(
2014
).
24.
P.
Michel
, “
Diffraction des électrons: Etudes de strucure
,”
Techniques de l’ingénieur
No. P1085 (
1990
), https://www.techniques-ingenieur.fr/base-documentaire/archives-th12/archives-techniques-d-analyse-tiata/archive-1/diffraction-des-electrons-p1085/ (in French).
25.
L.
Boufendi
and
A.
Bouchoule
, “
Particle nucleation and growth in a low-pressure argon-silane discharge
,”
Plasma Sources Sci. Technol.
3
(
3
),
262
267
(
1994
).
26.
G.
Al Makdessi
,
X.
Glad
,
S.
Dap
,
M.
Rojo
,
R.
Clergereaux
, and
J.
Margot
, “
Influence of a magnetic field on the formation of carbon dust particles in very low-pressure high-density plasmas
,”
J. Phys. D Appl. Phys.
50
(
15
),
155203
(
2017
).
27.
J.
Profili
 et al., “
Interaction of atomized colloid with an A.C. electric field in a dielectric barrier discharge reactor used for deposition of nanocomposite coatings
,”
J. Phys. D Appl. Phys.
50
(
7
),
075201
(
2017
).
28.
A.
Fan
, “
Copper wafer bonding
,”
Electrochem. Solid State Lett.
2
(
10
),
534
(
1999
).
29.
A.
El Warraky
,
H. A.
El Shayeb
, and
E. M.
Sherif
, “
Pitting corrosion of copper in chloride solutions
,”
Anti Corros. Methods Mater.
51
(
1
),
52
61
(
2004
).
30.
T. E.
Graedel
,
K.
Nassau
, and
J. P.
Franey
, “
Copper patinas formed in the atmosphere—I. Introduction
,”
Corros. Sci.
27
(
7
),
639
657
(
1987
).
31.
L.
Veleva
,
P.
Quintana
,
R.
Ramanauskas
,
R.
Pomes
, and
L.
Maldonado
, “
Mechanism of copper patina formation in marine environments
,”
Electrochim. Acta
41
(
10
),
1641
1645
(
1996
).
32.
J. F.
Pierson
,
A.
Thobor-Keck
, and
A.
Billard
, “
Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering
,”
Appl. Surf. Sci.
210
(
3–4
),
359
367
(
2003
).
33.
S. O.
Lumsdon
and
D. M.
Scott
, “
Assembly of colloidal particles into microwires using an alternating electric field
,”
Langmuir
21
(
11
),
4874
4880
(
2005
).
34.
T. K.
Lowenstein
,
M. N.
Timofeeff
,
S. T.
Brennan
,
L. A.
Hardie
, and
R. V.
Demicco
, “
Assembly of electrically functional microwires from nanoparticle suspensions via dielectrophoresis
,”
Science
294
,
1082
1086
(
2001
).

Supplementary Material

You do not currently have access to this content.