Positron annihilation spectroscopy in the Doppler and coincidence Doppler mode was applied on Ge1xSnx epitaxial layers, grown by chemical vapor deposition with different total As concentrations (10191021 cm3), high active As concentrations (1019 cm3), and similar Sn concentrations (5.9%–6.4%). Positron traps are identified as mono-vacancy complexes. Vacancy-As complexes, V-Asi, formed during the growth were studied to deepen the understanding of the electrical passivation of the Ge1xSnx:As epilayers. Larger mono-vacancy complexes, V-Asi (i2), are formed as the As doping increases. The total As concentration shows a significant impact on the saturation of the number of As atoms (i=4) around the vacancies in the sample epilayers. The presence of V-Asi complexes decreases the dopant activation in the Ge1xSnx:As epilayers. Furthermore, the presence of Sn failed to hinder the formation of larger V-Asi complexes and thus failed to reduce the donor-deactivation.

1.
E.
Haller
,
Mater. Sci. Semicond. Process.
9
,
408
(
2006
).
2.
C.
Claeys
and
E.
Simoen
,
Germanium-Based Technologies: From Materials to Devices
(
Elsevier
,
London
,
2011
).
3.
K.
Brunner
,
Rep. Prog. Phys.
65
,
27
(
2002
).
4.
G.
He
and
H. A.
Atwater
,
Phys. Rev. Lett.
79
(
10
),
1937
1940
(
1997
).
5.
R.
Loo
,
B.
Vincent
,
F.
Gencarelli
,
C.
Merckling
,
A.
Kumar
,
G.
Eneman
,
L.
Witters
,
W.
Vandervost
,
M.
Caymax
,
M.
Heyns
, and
A.
Thean
,
ECS J. Solid State Sci. Technol.
2
(
1
),
N35
N40
(
2013
).
6.
D. P.
Brunco
,
B.
De Jaeger
,
G.
Eneman
,
J.
Mitard
,
G.
Hellings
,
A.
Satta
,
V.
Terzieva
,
L.
Souriau
,
F. E.
Leys
,
G.
Pourtois
,
M.
Houssa
,
G.
Winderickx
,
E.
Vrancken
,
S.
Sioncke
,
K.
Opsomer
,
G.
Nicholas
,
M.
Caymax
,
A.
Stesmans
,
J.
Van Steenbergen
,
P.
Mertens
,
M.
Meuris
, and
M. M.
Heyns
,
J. Electrochem. Soc.
155
(
7
),
H552
H561
(
2008
).
7.
R. C.
Ropp
,
Solid State Chemistry
(
Elsevier
,
Amsterdam
,
2003
), p.
340
.
8.
R.
Soref
,
J.
Kouvetakis
,
J.
Tolle
,
J.
Menendez
, and
V.
D’Costa
,
J. Mater. Res.
22
(
12
),
3281
3291
(
2007
).
9.
X.
Gong
,
G.
Han
,
F.
Bai
,
S.
Su
,
P.
Guo
,
Y.
Yang
,
R.
Cheng
,
D.
Zhang
,
G.
Zhang
,
C.
Xue
,
B.
Cheng
,
J.
Pan
,
Z.
Zhang
,
E. S.
Tok
,
D.
Antoniadis
, and
Y.
Yeo
,
IEEE Electron Device Lett.
34
(
3
),
339
341
(
2013
).
10.
R.
Milazzo
,
E.
Napolitani
,
G.
Impellizzeri
,
G.
Fisicaro
,
S.
Boninelli
,
M.
Cuscunà
,
D.
De Salvador
,
M.
Mastromatteo
,
M.
Italia
,
A.
La Magna
,
G.
Fortunato
,
F.
Priolo
,
V.
Privitera
, and
A.
Carnera
,
J. Appl. Phys.
115
,
053501
(
2014
).
11.
A.
Nylandsted Larsen
and
A.
Mesli
,
Physica B
401
,
85
(
2007
).
12.
V.
Markevich
,
I.
Hawkins
,
A.
Peaker
,
K.
Emtsev
,
V.
Emtsev
,
V.
Litvinov
,
L.
Murin
, and
L.
Dobaczewski
,
Phys. Rev. B
70
,
235213
(
2004
).
13.
M. C.
Petersen
,
A.
Nylandsted Larsen
, and
A.
Mesli
,
Phys. Rev. B
82
,
075203
(
2010
).
14.
S.
Brotzmann
and
H.
Bracht
,
J. Appl. Phys.
103
,
033508
(
2008
).
15.
S.
Brotzmann
,
H.
Bracht
,
J.
Lundsgaard Hansen
,
A.
Nylandsted Larsen
,
E.
Simoen
,
E. E.
Haller
,
J. S.
Christensen
, and
P.
Werner
,
Phys. Rev. B
77
,
235207
(
2008
).
16.
F.
Tuomisto
and
I.
Makkonen
,
Rev. Mod. Phys.
85
,
1583
(
2013
).
17.
J.
Slotte
,
I.
Makkonen
, and
F.
Tuomisto
, in Characterisation and Control of Defects in Semiconductors, edited by F. Tuomisto (The Institution of Engineering and Technology, London, 2020), pp. 263–284.
18.
A.
Polity
and
F.
Rudolf
,
Phys. Rev. B
59
,
10025
(
1999
).
19.
J.
Slotte
,
S.
Kilpeläinen
,
F.
Tuomisto
,
J.
Räisänen
, and
A.
Nylandsted Larsen
,
Phys. Rev. B
83
,
235212
(
2011
).
20.
K.
Kuitunen
,
F.
Tuomisto
,
J.
Slotte
, and
I.
Capan
,
Phys. Rev. B
78
,
033202
(
2008
).
21.
J.
Slotte
,
M.
Rummukainen
,
F.
Tuomisto
,
V. P.
Markevich
,
A. R.
Peaker
,
C.
Jeynes
, and
R. M.
Gwilliam
,
Phys. Rev. B
78
,
085202
(
2008
).
22.
J.
Kujala
,
T.
Südkamp
,
J.
Slotte
,
I.
Makkonen
,
F.
Tuomisto
, and
H.
Bracht
,
J. Phys. Condens. Matter
28
,
335801
(
2016
).
23.
T.
Kalliovaara
,
J.
Slotte
,
I.
Makkonen
,
J.
Kujala
,
F.
Tuomisto
,
R.
Milazzo
,
G.
Impellizzeri
,
G.
Fortunato
, and
E.
Napolitani
,
Appl. Phys. Lett.
109
,
182107
(
2016
).
24.
A.
Vohra
,
A.
Khanam
,
J.
Slotte
,
I.
Makkonen
,
G.
Pourtois
,
R.
Loo
, and
W.
Vandervorst
,
J. Appl. Phys.
125
,
025701
(
2019
).
25.
A.
Vohra
,
A.
Khanam
,
J.
Slotte
,
I.
Makkonen
,
G.
Pourtois
,
C.
Porret
,
R.
Loo
, and
W.
Vandervorst
,
J. Appl. Phys.
125
,
225703
(
2019
).
26.
V.
Terzieva
,
L.
Souriau
,
M.
Caymax
,
D.
Brunco
,
A.
Moussa
,
S.
Van Elshocht
,
R.
Loo
,
F.
Clemente
,
A.
Satta
, and
M.
Meuris
,
Thin Solid Films
517
,
172
(
2008
).
27.
G.
Wang
,
R.
Loo
,
E.
Simoen
,
L.
Souriau
,
M.
Caymax
,
M. M.
Heyns
, and
B.
Blanpain
,
Appl. Phys. Lett.
94
,
102115
(
2009
).
28.
A.
Schulze
,
L.
Strakos
,
T.
Vystavel
,
R.
Loo
,
A.
Pacco
,
N.
Collaert
,
W.
Vandervorst
, and
M.
Caymax
,
Nanoscale
10
,
7058
(
2018
).
29.
H.
Han
,
T.
Hantschel
,
A.
Schulze
,
L.
Strakos
,
T.
Vystavel
,
R.
Loo
,
B.
Kunert
,
R.
Langer
,
W.
Vandervorst
, and
M.
Caymax
,
Ultramicroscopy
210
,
112922
(
2020
).
30.
K.
Kuitunen
,
F.
Tuomisto
, and
J.
Slotte
,
Phys. Rev. B
76
,
233202
(
2007
).
31.
V.
Ranki
,
A.
Pelli
, and
K.
Saarinen
,
Phys. Rev. B
69
,
115205
(
2004
).
32.
M.
Ramamoorthy
and
S. T.
Pantelides
,
Phys. Rev. Lett.
76
,
4753
(
1996
).
You do not currently have access to this content.