The newly synthesized two-dimensional polyaniline (C3N) is structurally similar to graphene and has interesting electronic, magnetic, optical, and thermal properties. Motivated by the fact that point defects in graphene give rise to interesting features, like magnetization in an all carbon material, we perform density functional theory calculations to investigate vacancy and Stone–Wales type point defects in monolayer C3N. We compare and contrast the structural, electronic, and magnetic properties of these defects with those in graphene. While monovacancies and Stone–Wales defects of C3N result in reconstructions similar to those in graphene, divacancies display dissimilar geometrical features. Different from graphene, all vacancies in C3N have metallic character because of altered stoichiometry; those that have low-coordinated atoms have finite magnetic moments. We further investigate the robustness of the reconstructed structures and the changes in the magnetic moments by applying tensile and compressive biaxial strain. We find that, with the advantage of finite bandgap, point defects in C3N are qualified as good candidates for future spintronics applications.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
J.-C.
Charlier
,
X.
Blase
, and
S.
Roche
,
Rev. Mod. Phys.
79
,
677
(
2007
).
3.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
4.
M. J.
Allen
,
V. C.
Tung
, and
R. B.
Kaner
,
Chem. Rev.
110
,
132
(
2010
).
5.
W.
Choi
,
I.
Lahiri
,
R.
Seelaboyina
, and
Y. S.
Kang
,
Crit. Rev. Solid State Mater. Sci.
35
,
52
(
2010
).
6.
E. P.
Randviir
,
D. A.
Brownson
, and
C. E.
Banks
,
Mater. Today
17
,
426
(
2014
).
7.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
8.
A.
Celis
,
M. N.
Nair
,
A.
Taleb-Ibrahimi
,
E. H.
Conrad
,
C.
Berger
,
W. A.
de Heer
, and
A.
Tejeda
,
J. Phys. D Appl. Phys.
49
,
143001
(
2016
).
9.
A. D.
Güçlü
,
P.
Potasz
,
M.
Korkusinski
, and
P.
Hawrylak
,
Graphene Quantum Dots
(
Springer
,
Heidelberg
,
2014
).
10.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
11.
L.
Vicarelli
,
S. J.
Heerema
,
C.
Dekker
, and
H. W.
Zandbergen
,
ACS Nano
9
,
3428
(
2015
).
12.
M. T.
Lusk
and
L. D.
Carr
,
Phys. Rev. Lett.
100
,
175503
(
2008
).
13.
W.
Han
,
R. K.
Kawakami
,
M.
Gmitra
, and
J.
Fabian
,
Nat. Nanotechnol.
9
,
794
(
2014
).
14.
M.
Rostami
,
R.
Faez
, and
H.
Rabiee Golgir
,
J. Appl. Phys.
114
,
084313
(
2013
).
15.
H.
Padmanabhan
and
B. R. K.
Nanda
,
Phys. Rev. B
93
,
165403
(
2016
).
16.
M. J. C. A. M.
Valencia
,
Phys. Rev. B
96
,
125431
(
2017
).
17.
C.
Ronchi
,
M.
Datteo
,
D.
Perilli
,
L.
Ferrighi
,
G.
Fazio
,
D.
Selli
, and
C.
Di Valentin
,
J. Phys. Chem. C
121
,
8653
(
2017
).
18.
S.
Roche
,
J.
Åkerman
,
B.
Beschoten
,
J.-C.
Charlier
,
M.
Chshiev
,
S. P.
Dash
,
B.
Dlubak
,
J.
Fabian
,
A.
Fert
,
M.
Guimarães
,
F.
Guinea
,
I.
Grigorieva
,
C.
Schönenberger
,
P.
Seneor
,
C.
Stampfer
,
S. O.
Valenzuela
,
X.
Waintal
, and
B.
van Wees
,
2D Mater.
2
,
030202
(
2015
).
19.
Q.
Hu
,
Q.
Wu
,
H.
Wang
,
J.
He
, and
G.
Zhang
,
Phys. Status Solidi B
249
,
784
(
2012
).
20.
S.
Mizuno
,
M.
Fujita
, and
K.
Nakao
,
Synth. Met.
71
,
1869
(
1995
).
21.
J.
Mahmood
,
E. K.
Lee
,
M.
Jung
,
D.
Shin
,
H.-J.
Choi
,
J.-M.
Seo
,
S.-M.
Jung
,
D.
Kim
,
F.
Li
,
M. S.
Lah
,
N.
Park
,
H.-J.
Shin
,
J. H.
Oh
, and
J.-B.
Baek
,
Proc. Natl. Acad. Sci. U.S.A.
113
,
7414
(
2016
).
22.
S.
Yang
,
W.
Li
,
C.
Ye
,
G.
Wang
,
H.
Tian
,
C.
Zhu
,
P.
He
,
G.
Ding
,
X.
Xie
,
Y.
Liu
,
Y.
Lifshitz
,
S.-T.
Lee
,
Z.
Kang
, and
M.
Jiang
,
Adv. Mater.
29
,
1605625
(
2017
).
23.
X.
Zhou
,
W.
Feng
,
S.
Guan
,
B.
Fu
,
W.
Su
, and
Y.
Yao
,
J. Mater. Res.
32
,
2993
(
2017
).
24.
A.
Bafekry
,
M.
Ghergherehchi
,
S.
Farjami Shayesteh
, and
F. M.
Peeters
,
Chem. Phys.
526
,
110442
(
2019
).
25.
A.
Bafekry
,
B.
Akgenc
,
S.
Farjami Shayesteh
, and
B.
Mortazavi
,
Appl. Surf. Sci.
585
,
144450
(
2020
).
26.
A.
Bafekry
,
C.
Stampfl
,
M.
Ghergherehchi
, and
S.
Farjami Shayesteh
,
Carbon
157
,
371-384
(
2020
).
27.
L.
Xie
,
L.
Yang
,
W.
Ge
,
X.
Wang
, and
J.
Jiang
,
Chem. Phys.
520
,
40
(
2019
).
28.
H.
Zeng
,
J.
Zhao
,
A.-Q.
Cheng
,
L.
Zhang
,
Z.
He
, and
R.-S.
Chen
,
Nanotechnology
29
,
075201
(
2018
).
29.
S.
Sadeghzadeh
,
Diam. Relat. Mater.
89
,
257
(
2018
).
30.
S.
Kumar
,
S.
Sharma
,
V.
Babar
, and
U.
Schwingenschlögl
,
J. Mater. Chem. A
5
,
20407
(
2017
).
31.
Y.
Hong
,
J.
Zhang
, and
X. C.
Zeng
,
Nanoscale
10
,
4301
(
2018
).
32.
P.
Bhauriyal
,
A.
Mahata
, and
B.
Pathak
,
J. Phys. Chem. C
122
,
2481
(
2018
).
33.
G.-C.
Guo
,
R.-Z.
Wang
,
B.-M.
Ming
,
C.
Wang
,
S.-W.
Luo
,
C.
Lai
, and
M.
Zhang
,
Appl. Surf. Sci.
475
,
102
(
2019
).
34.
M.
Makaremi
,
S.
Grixti
,
K. T.
Butler
,
G. A.
Ozin
, and
C. V.
Singh
,
ACS Appl. Mater. Interfaces
10
,
11143
(
2018
).
35.
B.
Yang
and
Z.
Fu
,
J. Phys. Chem. C
123
,
5731
(
2019
).
36.
X.
Li
,
T.
Guo
,
L.
Zhu
,
C.
Ling
,
Q.
Xue
, and
W.
Xing
,
Chem. Eng. J.
338
,
92
(
2018
).
37.
H.
Cui
,
K.
Zheng
,
Y.
Zhang
,
H.
Ye
, and
X.
Chen
,
IEEE Electron Device Lett.
39
,
284
(
2018
).
38.
M.
Makaremi
,
B.
Mortazavi
, and
C. V.
Singh
,
J. Phys. Chem. C
121
,
18575
(
2017
).
39.
S.
Jalili
,
F.
Molani
,
M.
Akhavan
, and
J.
Schofield
,
Physica E
56
,
48
(
2014
).
40.
M. B.
Tagani
and
S. I.
Vishkayi
,
J. Appl. Phys.
124
,
084304
(
2018
).
41.
Q.
Li
,
H.
Wang
,
H.
Pan
, and
Y.
Ding
,
J. Phys. D Appl. Phys.
51
,
345301
(
2018
).
42.
C.
Xia
,
L.
Fang
,
W.
Xiong
,
T.
Wang
,
S.
Wei
, and
Y.
Jia
,
Carbon
141
,
363
(
2018
).
43.
Y.
Ma
,
P. O.
Lehtinen
,
A. S.
Foster
, and
R. M.
Nieminen
,
New J. Phys.
6
,
68
(
2004
).
44.
C.
Xia
,
L.
Fang
,
W.
Xiong
,
T.
Wang
,
S.
Wei
, and
Y.
Jia
,
Carbon
141
,
363
(
2019
).
45.
A.
Bafekry
,
C.
Stampfl
, and
S.
Farjami Shayesteh
,
ChemPhysChem
21
,
164
(
2020
).
46.
A.
Bafekry
,
C.
Stampfl
,
S. F.
Shayesteh
, and
F. M.
Peeters
,
Adv. Electron. Mater.
5
,
1900459
(
2019
).
47.
A.
Bafekry
,
S. F.
Shayesteh
, and
F. M.
Peeters
,
Phys. Chem. Chem. Phys.
21
,
21070
21083
(
2019
).
48.
A.
Bafekry
,
S. F.
Shayesteh
, and
F. M.
Peeters
,
J. Phys. Chem. C
123
,
12485
(
2019
).
49.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
50.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
51.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
52.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
53.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
54.
A. W.
Robertson
,
B.
Montanari
,
K.
He
,
C. S.
Allen
,
Y. A.
Wu
,
N. M.
Harrison
,
A. I.
Kirkland
, and
J. H.
Warner
,
ACS Nano
7
,
4495
(
2013
).
55.
L.
Xie
,
L.
Yang
,
W.
Ge
,
X.
Wang
, and
J.
Jiang
,
Chem. Phys.
520
,
40
(
2019
).
56.
D.
Ma
,
J.
Zhang
,
Y.
Tang
,
Z.
Fu
,
Z.
Yang
, and
Z.
Lu
,
Phys. Chem. Chem. Phys.
20
,
13517
(
2018
).
57.
M.
Topsakal
,
E.
Aktürk
,
H.
Sevinçli
, and
S.
Ciraci
,
Phys. Rev. B
78
,
235435
(
2008
).
58.
F.
Banhart
,
J.
Kotakoski
, and
A. V.
Krasheninnikov
,
ACS Nano
5
,
26
(
2011
).
59.
P. R.
Wallace
,
Phys. Rev.
71
,
622
(
1947
).
60.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
61.
C.
Zhang
,
Y.
Jiao
,
T.
He
,
S.
Bottle
,
T.
Frauenheim
, and
A.
Du
,
J. Phys. Chem. Lett.
9
,
858
(
2018
).
62.
M. M.
Ugeda
,
I.
Brihuega
,
F.
Hiebel
,
P.
Mallet
,
J.-Y.
Veuillen
,
J. M.
Gómez-Rodríguez
, and
F.
Ynduráin
,
Phys. Rev. B
85
,
121402
(
2012
).
63.
A.
Lherbier
,
S. M.-M.
Dubois
,
X.
Declerck
,
Y.-M.
Niquet
,
S.
Roche
, and
J.-C.
Charlier
,
Phys. Rev. B
86
,
075402
(
2012
).
64.
X.
Fan
,
W.
Zheng
, and
J.-L.
Kuo
,
RSC Adv.
3
,
5498
(
2013
).
65.
P.
Rani
and
V. K.
Jindal
,
RSC Adv.
3
,
802
(
2013
).
66.
S.
Casolo
,
R.
Martinazzo
, and
G. F.
Tantardini
,
J. Phys. Chem. C
115
,
3250
(
2011
).
67.
M.
Pizzochero
,
O.
Leenaerts
,
B.
Partoens
,
R.
Martinazzo
, and
F. M.
Peeters
,
J. Phys. Condens. Matter
27
,
425502
(
2015
).
68.
H.
Zhang
,
M.
Zhao
,
X.
Yang
,
H.
Xia
,
X.
Liu
, and
Y.
Xia
,
Diam. Relat. Mater.
19
,
1240
(
2010
).
69.
Y.
Zhang
,
S.-Y.
Li
,
H.
Huang
,
W.-T.
Li
,
J.-B.
Qiao
,
W.-X.
Wang
,
L.-J.
Yin
,
K.-K.
Bai
,
W.
Duan
, and
L.
He
,
Phys. Rev. Lett.
117
,
166801
(
2016
).
70.
A.
Hashimoto
,
K.
Suenaga
,
A.
Gloter
,
K.
Urita
, and
S.
Iijima
,
Nature
430
,
870
(
2004
).
71.
M. M.
Ugeda
,
I.
Brihuega
,
F.
Guinea
, and
J. M.
Gómez-Rodríguez
,
Phys. Rev. Lett.
104
,
096804
(
2010
).
72.
A. A.
El-Barbary
,
R. H.
Telling
,
C. P.
Ewels
,
M. I.
Heggie
, and
P. R.
Briddon
,
Phys. Rev. B
68
,
144107
(
2003
).
73.
P. O.
Lehtinen
,
A. S.
Foster
,
Y.
Ma
,
A. V.
Krasheninnikov
, and
R. M.
Nieminen
,
Phys. Rev. Lett.
93
,
187202
(
2004
).
74.
O. V.
Yazyev
and
L.
Helm
,
Phys. Rev. B
75
,
125408
(
2007
).
75.
V. G.
Miranda
,
L. G. G. V. D.
da Silva
, and
C. H.
Lewenkopf
,
Phys. Rev. B
94
,
075114
(
2016
).
76.
M.
Casartelli
,
S.
Casolo
,
G. F.
Tantardini
, and
R.
Martinazzo
,
Phys. Rev. B
88
,
195424
(
2013
).
77.
E. H.
Lieb
,
Phys. Rev. Lett.
62
,
1201
(
1989
).
78.
L.
Rodrigo
,
P.
Pou
, and
R.
Pérez
,
Carbon
103
,
200
(
2016
).
You do not currently have access to this content.